REPORT NO. DOT-TSC- FHWA-71-1

AUTOMATIC DATA REDUCTION FROM AERIAL PHOTOGRAPHSPHASE 1 REPORT

JURIS G. RAUDSEPS

AND DAVID S. PRERAU
TRANSPORTATION SYSTEMS CENTER
55 BROADWAY
CAMBRIDGE, MA. 02142

AUGUST 1971
TECHNICAL REPORT

[^0]The contents of this report reflect the views of the Transportation System Center which is responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policy of the Department of Transportation. This report does not constitute a standard, specification or regulation.

$\begin{aligned} & \text { 1. Report No. } \\ & \text { DOT-TSC-FHWA-71-1 } \end{aligned}$	2. Government Accession No.	3. Recipient's Catalog No.	
4. Title and Subtitle Automatic Data Reduction from Aerial Photographs - Phase I Report		5. Roport $/ 710$	
		6. Performing Organization Code TCD	
Jüuis ${ }^{\text {Authr }}$ G. Raudseps, David S. Prerau		8. Porforming Orgonization Report No.	
9. Performing Organization Name and Address DOT/Transportation Systems Center 55 Broadway Cambridge, MA 02142		$\begin{gathered} \text { 10. Work Unit No. } \\ \text { R-1016 } \\ \hline \end{gathered}$	
		$\begin{aligned} & \text { 11. Controct or Grant No. } \\ & \mathrm{HW}-05 \end{aligned}$	
		13. Type of Report and Period Covered Technical Report 7/1/70 - 6/30/71	
12. Sponsoring Agency Name and Address Federal Highway Administration 800 Independence Avenue, S.W. Washington, D.C. 20546			
		14. Sponsoring Agency Code	
15. Supplementary Notes			
16. Abstract Aerial photographs are useful in various studies of highway traffic behavior. From a timed sequence of aerial photographs of a fixed highway area, one can find for each vehicle crossing the area data on position, velocity, trajectory (i.e., entrancing, lane changing, and exiting) and type (i.e., car, truck, or bus). In this project, an interactive system consisting of a computer, a computercontrolled flying-spot scanner, and a graphics tablet is utilized to significantly automate the data reduction process. This report describes the current state-of-the-art of data reduction and the system being developed. The pertinent computer programs developed to date are documented in detail.			
17. Key Words 18. Dis stribution Statement Availability is Unlimited. AVocument may be Released Tothe National Techical Information Service. Springfield, Virginia 22151, for Sale to the Public.			
19. Security Classif. (of this repart) Unclassified	20. Security Classif. (of this page) Unclassified	$\begin{gathered} \text { 21. No. of Pages } \\ 119 \end{gathered}$	22. Price

TABLE OF CONTENTS

Page
1.0 INTRODUCTION 1
2.0 STATE OF THE ART SURVEY 4
2.1 Current Techniques of Data Reduction 4
2.2 Film Scanners-A Survey 12
2.2.1 Flying-Spot Scanners 12
2.2.2 Other Types Of Scanners 17
3.0 AUTOMATIC DATA REDUCTION-SYSTEM OPERATION 19
4.0 DESCRIPTION OF PROGRAMS DEVELOPED 34
4.1 Scan 34
4.1.1 Interlaced Raster Scan 34
4.l.2 Store Picture 35
4.1.3 Picture Averaging 36
4.2 Display and Printout 37
4.2.1 Display and Call 37
4.2.2 Print Matrix 43
4.3 Filter. 46
4.3.1 Laplacean Calculator 46
4.3.2 Combine Pictures on Disk and in Core 47
4.4 Interactive Operation. 48
4.4.1 Main Program (Stylus Follower) 48
4.4.2 Set Cross, Display Cross 49
4.4.3 Read Message 51
4.4.4 Read Numbers 51
4.4.5 Text Matching 51
4.4.6 Parameter Reading 52
4.5 Template Matching and Landmark Identification 54
4.5.1 Landmark Identification Program 54
4.5.2 Picture Comparison (Disk and Core) 57
4.6 Oblique Scan 59
4.6.1 Set Draw Line, Draw Line 59 59
4.6.2 Oblique Scan 61
4.7 Contour Trace and Property Determination. 70 70
4.7.1 Contour Trace (Right) 70
4.7.2 Size and Center 75 75
4.7.3 Square Root, Double Precision Square Root. 78
5.0 MACROS AND THE MACRO PROCESSOR 79 79
5.1 The Macro Processor 79
5.2 Macros Developed 82
5.2.1 5ARGA 82
5.2.2 Interactive Macros 86
5.2.3 Macros for Subroutine Calls 92
5.2.4 Disk File Handling Macros 96
5.2.5 Trim Deflection Signal Macros 101
5.2.6 Location Defining Macros 103
5.2.7 Arithmetic and Logical Operations 106
5.2.8 Miscellaneous Macros 108

TABLE OF CONTENTS (CONT.)

Page

LIST OF ILLUSTRATIONS

Figure Page

1. Transportation Imagery System. 20
2. The Overall System 25
3. Scan Next Film Frame and Preprocess 26
4. Locate Landmarks in Interactive Mode 27
5. Locate Road-Edges in Interactive Mode 28
6. Locate Vehicles in Interactive Mode 29
7. Determine Trajectories 30
8. Relocate Landmarks 31
9. Relocate Road-Edges 32
10. Relocate Vehicle 33
ll. Area of a Highway Photograph Scanned by ILC when called by SFW 40
11. DIS Display of Stored Central Section of Scanned Area 40
12. DIS Display with a Cross Placed on the Selected Vehicle 41
13. Contour of Selected Vehicle Determined and Displayed. 41
14. Selected Oblique-Angled Picture Section Redisplayed in "Normalized Position" 43
15. Light Intensity Print-out: The Symbol at each Point Signifies the Numerical Light-Intensity of the Point. 44
16. Gray-Level Print-out: The Symbol at each Point has a Visual Gray-Level Approximating the Light Intensity of the Point 45
17. A Full Frame is Scanned and a Subarea is Selected by the Brightened Square 55

LIST OF ILLUSTRATIONS (CONTINUED)

FigurePage
19. The Selected Subarea is Displayed Enlarged, and the Selected Landmark Point is Chosen with the Cross 56
20. The Full Frame is Displayed Again with the Cross Indicating the Previously Determined Landmark 56
21. A 0° Vehicle vs. a 5° Vehicle 64
22. A 5° Vehicle vs. a 10° Vehicle 65
23. A 10° Vehicle vs. a 15° Vehicle 66
24. A 0' Vehicle vs. a l0' Vehicle 67
25. A 10° Vehicle vs. a 20° Vehicle 68
26. Projections of a Point onto the Vehicle Axes, U and V. 76
LIST OF TABLES
Table Page

1. The Contour Tracing Algorithm 74

1.0 INTRODUCTION

This report deals with the problem of automatically extracting data about highway traffic flow from sequences of aerial photographs. The work reported is being performed at the Transportation Systems Center of the United States Department of Transportation for the Federal Highway Administration under General Work Agreement 71-HW-01 Project Plan Agreement No. HW-05.

The problem being attacked is to develop techniques to decrease the cost and time involved in reducing the traffic data contained in aerial photographs to usable form.

There is considerable interest in gathering data on traffic flow by means of aerial photography. The major reason for this is that an aerial photograph is the only practical medium for observing the location of every vehicle within the area covered at the same given instant in time. By extension, in successive frames of photography covering a given area one can observe all the changes in vehicle locations that have occurred during the interval between the instants that the photographs were taken. From these, average vehicle velocities over the interval can be calculated.

Both macroscopic and microscopic aspects of traffic flow can be observed from aerial photographs. The term "macroscopic" in this context denotes features pertaining to the flow of traffic as a whole - such things as mean velocity, density, flow rate in vehicles/hour, distribution of traffic by lanes, by vehicle types (cars, trucks), etc. "Microscopic" denotes those features defined in terms of the actions of individual vehicles or configurations of vehicles. Included among them are such things as headways between individual vehicles, lanechanging behavior, etc. Generally speaking, the people concerned with highway operation would be interested in the macroscopic aspects of flow - in such operationally meaningful quantities as the number of vehicles on a given stretch of road, the average velocity along that stretch, travel time between some pair of points, etc. The microscopic aspects of traffic are more of concern to designers, who must be able to predict the effects upon traffic flow of ramps, curves and grades, etc., and theoreticians who need data on which to base their models and with which to validate them.

Sequences of aerial photographs inherently contain a microscopic depiction of traffic behavior over the period they cover. This property makes aerial photography an essentially
irreplaceable tool in those situations where the precise behavior of individual vehicles is the prime matter of interest, since the amount of instrumentation and recording equipment required to simultaneously follow precisely a large number of vehicles over an extended area is in general too formidable to consider.

It is less obvious that aerial photography is a good tool for observing the macroscopic aspects of traffic. Most of the parameters of traffic flow can be derived from readings of counters activated by the conceptual equivalents of tripwires stretched across the highway lanes (current technology favors electromagnetic induction loops). Furthermore, ground-based instrumentation, once installed, can operate largely independently of weather and lighting conditions and in some cases can be used for real-time control. In view of these advantages of ground instrumentation, it appears that aerial photography for observing gross traffic flow should be limited to areas where this would need to be done so infrequently that installing equipment on the ground would not be economical.

Whatever the merits of aerial observation in any given situation, it is an established fact that aerial photographs are being utilized quite widely for observing and studying traffic. This is so in spite of obvious and inherent problems in data collection, including the cost of flying and photographing and the limitations imposed by atmospheric affects, weather, and lighting, and in spite of the very considerable effort required to reduce the data to useable form from the photography.

Our survey of current techniques of data reduction shows that human operators do the work. The techniques appear slow, tedious, somewhat inaccurate, expensive, and limited in respect to the data ultimately available to the user. This is the "classical" description of a technique that "should be" in some way "automated" or "computerized."

Our approach is one of expanding on the work that has been done already in conjunction with manual systems. The goal is to eliminate, by stages, the tasks that must now be performed by a human operator of a film reader. We take advantage of interactive computer graphics techniques to facilitate human intervention and of the bookkeeping capability of an on-line computer to collect more complete data than a human filmreader can reasonably collect with both speed and accuracy.

This report describes the progress of the first year of a planned two-year effort. Included are a survey of current
manual techniques of data reduction, a survey of film scanners, a description of our approach and our hardware, and documentation for the significant computer routines developed thus far.

2.0 STATE OF THE ART SURVEY

In this section, we shall present two state-of-the-art surveys: one on techniques presently used for data reduction of aerial photographs of highways, and the other on devices presently available for scanning film.

2.1 CURRENT TECHNIQUES OF DATA REDUCTION

At the present time, data reduction from aerial photographs of traffic is done manually. That is, the human eye and brain are the mechanism for recognizing vehicles as such, and human hands guide any measuring equipment used to define their location. The fact that a human being is doing the data reduction brings with it a number of advantages. The human is the best pattern recognizer known, being able to recognize vehicles under a wide range of conditions, adjusting automatically to changes in contrast, color, lighting and shadows, scale, orientation, etc., etc. Ideally, a sufficiently experienced, motivated, and attentive person using adequate equipment and diligence should be able to locate vehicles in a photograph more accurately and with lower likelihood of omission or false introduction than any automatic device.

It is reasonable to assume that the decision on whether or not there is a vehicle at a given location that is arrived at by a human photointerpreter devoting his full attention to that location will be the best possible, given the film input. In any practical case a human film reader will introduce errors beyond the irreducible minimum due to the limitations of the film medium itself. These errors will be of several kinds false omissions and false introductions of vehicles due to too cursory an examination of the film, and measurement errors due to imprecise positioning of the measurement apparatus relative to the vehicle image. All these are errors in measuring the coordinates of points on the film. It is only these discrepencies between the true traffic situation and the traffic situation as finally recorded that can be treated as data reduction errors attributable to the film reader.

In comparing different film reading systems, the expected values of these errors must be matched against each other and against the errors in mapping points on the film into points on the ground.

The precise calculation of the ground coordinates corresponding to a point whose film coordinates are known is quite a complex process forming part of the science of photogrammetry.

The calculations are based on the measurements of the film coordinates of points whose ground coordinates have been precisely measured. Errors are introduced by measurement errors on the ground and the film, by round off in the calculations, by lens distortions, and by film warping. Generally speaking, all become interrelated. Ordinarily, a considerable number (~15) of ground reference points are considered per frame. As additional points are introduced into the calculation, they serve to both refine the mapping function and to validate the measurements of the other points.

There are in principle two classes of manual film reading systems now in use. The first class is used for extracting the macroscopic features of traffic flow only. A representative system of this type is that employed by the Freeway Operations Section of the California Division of Highways, concerned with monitoring freeway traffic flow in the Los Angeles area. The surveys have a limited aim - to monitor the degree of traffic congestion during weekday rush hours along selected sections of the freeway system.

The surveillance technique consists of overflying the section of freeway under consideration in a light airplane and photographing successive half-mile segments of the road with a standard 35 mm camera equipped with a large capacity film magazine. The data reduction process is rather crude - the photographs are projected on a screen and vehicles on fixed road segments are counted. The road segments considered are typically 800 feet long and are delineated by such landmarks as ramps, overpasses, etc. A surveillance flight may last some 2 l/2 hours, during which a six-mile section under study would be overflown some 25 times. The final output for consideration by the traffic engineer is a density chart showing the average number of vehicles per mile per lane as a function of time. From these, travel times can be deduced by utilizing empirically derived relationships between traffic density and average speed. Data gathered by surveillance flights are checked against speedomenter records of test cars driven along the sections under study during the time span covered by the photography. Test cars are also used on the days preceding and following the days of the flight, and the flight is repeated if the data from the test cars show that the traffic patterns on that day were atypical.

The requirements of film reading precision in this case are minimal, the only errors of significance being omissions and false introductions of vehicles. For all vehicles except those at the ends of the highway segments the assignment to the correct segment is obvious, and assignment in questionable cases is essentially arbitrary anyway. An inevitable degree of
uncertainty about the car counts in some highway segments arises from the presence of overpasses that obscure parts of the road. In these cases the assumption is made that the vehicle density under the overpass is the same as the average density in its vicinity, and certainly on the average this must be true. The reading errors per se are estimated by the personnel of the California Division of Highways to vary between 2 - 10% omissions, the error rate varying with lighting conditions and increasing sharply as lighting becomes bad.

With current procedures, a typical $2 \mathrm{l} / 2$ hour surveillance flight results in some 300 frames of photography, covering some llo0-1200 segments in which vehicles are to be counted. Film reading consists of counting vehicles within each segment and compiling a table of these values. That task currently takes a full man-week of effort. Density calculations and drafting to produce a finished chart take approximately again that long.

Currently, no data are being extracted regarding traffic composition by types (cars, trucks). Traffic density by lanes is recorded only in areas where this appears critical. Headway distributions are not recorded, and information concerning vehicle speed is not directly derivable from the photographs, since overlapping photographs closely spaced in time are not taken. These data are of varying degrees of interest, but are not now gathered because they would complicate the task of the human film reader. The speed data is of particular interest, but this can not be obtained without changing the entire mode of operation.

At the present time, the use of aerial photography in the inventory of freeway congestion in the Los Angeles area has been suspended because the personnel concerned are testing alternate methods of congestion inventory using lane occupancy recorders. As yet, this work has not progressed to a point where the results obtained by the alternate method can be compared to those obtained from aerial photography.

It appears to be the opinion of the personnel of the California Division of Highways that such comparison should be performed to validate the conclusions reached on the basis on ground instrument readings. Such validation would be of the nature of a calibration of the ground instrument system, probably necessary because presence detectors have a tendency to falsely introduce apparent vehicles, and their outputs depend on vehicle size, speed and perhaps spacing. Thus in addition to the initial comparison with aerial data necessary for calibration at the time a system of sensors is installed, subsequent such comparison for recalibration might be necessary if traffic patterns should over the course of time deviate
significantly from those occurring at the time of system installation. Such variations in traffic patterns may be expected (in fact, hoped for) if various control measures, such as ramp metering, are installed.

In addition, the people at the California Division of Highways feel there will be occasion to fly aerial congestion survey flights even after ground instrumentation is installed and calibrated for the sections of freeway now surveyed. Currently, traffic survey flights are made only during morning and evening rush hours during midweek. Weekend congestion is not inventoried because the congestion patterns tend to vary with the time of year, weather, and various special events (e.g. fairs), so that it does not appear a good investment of resources to gather congestion inventories now. Such data would nevertheless be of considerable interest, particularly for weekends on which congestion is caused by various annual special events. In these, analysis of one year's problems might be used to improve flow the following year.

The improvements in data reduction techniques for macroscopic analysis of traffic that appear to be most desired are primarily a reduction in cost and in time. The additional data that are mentioned above as being of interest are not now gathered because of the clerical burden that obtaining them would impose on the human film readers. Were the film to be read by a computer-controlled system, these data would come essentially free, since a computer, unliked the human brain, is an excellent device for performing bookkeeping functions.

The details of the data gathering and data reduction process involved in observing the macroscopic behavior of traffic by using aerial photography are those pertaining to the work of the Freeway Operations Section, District 7, California Division of Highways. Very similar work has also been done in the San Francisco area and in St. Louis, Missouri, by the Missouri Highway Department, and apparently also in Houston, Texas. It was the strongly expressed opinion of the California highway engineers that continuous congestion inventory of the type that they were engaged in compiling would become recognized as a necessary program for essentially every highway department concerned with freeway system operation. It was their feeling that the availability of a central service bureau capable of returning fully reduced operations data within a turnaround time of approximately one week would be a welcome service for the potential users.

A number of organizations are engaged in the microscopic analysis of traffic from aerial photographs. It does not appear to be germane to a discussion of scanning techniques to discuss in detail the goals of their research except as these affect
the accuracy requirements of the scanning process.
The System Development Corporation is engaged in a study of traffic flow through a diamond interchange. The interchange is photographed from a helicopter hovering at an altitude of some 2100'. A Maurer 70 mm camera is used, with a Zeiss Biogon 72° lens. This gives ground coverage of about 4000^{\prime} on the diagonal, of which about 3000' are considered in the study. It is considered necessary to photograph an area extending some 500' on each side beyond the area of interest to assure full coverage, since the helicopter may experience difficulty in maintaining station and attitude. Photographs are taken at l-second intervals. Faster repetition rates are not considered practical largely because of expected mechanical problems of wear, etc.

The model of a diamond interchange used by SDC involves dividing the interchange into functional blocks, such as ramps, approaches to ramps, segments between off and on ramps, etc. The ground reference points of interest are, therefore, the boundaries of these functional blocks. They are marked on the ground by 8^{\prime} x l' strips placed on the shoulders of the roadway.

The matters of interest to the researchers are the time each vehicle spends traversing each block, its speed in crossing block boundaries, and que lengths as a function of traffic signal states. The traffic signal state at any time can be seen in the photographs from special signal lights pointed vertically that have been installed for the purposes of the experiment.

The film is read by operators operating a Benson-Lehner Telereadex device. This is essentially a table on which the film is projected at either lox or 20X magnification (the operators use 20x for this task). The table is equipped with a pair of crossed wires, one horizontal and one vertical, which the operator can move by twisting a handle with each hand. When she depresses a foot switch, a digital encoding of the positions of the wires at that instant is punched into IBM cards by a standard IBM card punch connected to the film reader. At the same time a card sequence number, advanced automatically, a film frame number, advanced automatically when the film is advanced, and various other codes, set by hand on a number of dials, are also punched. The reader is equipped with an elaborate film advance mechanism allowing foreward and backward advancing of the film as well as rotation of the projected image - convenient in that it is generally used to align the roadway with one of the cross-wires, so that only one wire need be moved when measuring the locations of successive cars in a line.

An experienced operator can read car locations quite rapidly. Even so, it takes roughly 20 hours to read the 60 frames (each with some 500 cars) representing l minute of traffic. Reading inaccuracies are of two kinds - missed vehicles and positioning errors. No good statistics on the fraction of vehicles missed appeared to be available. SDC would like to keep it under l\%, but they have signed a contract with UCLA to perform film reading for them with a provision that only 95% of the vehicles in any one frame need be read.

The position errors are due to incorrect placement of the cross-wires relative to the vehicle image. This can come about for a number of reasons - fuzzy film, parallax effects, and simply the unsteadiness of the operator's hand. These errors are apparently under 3^{\prime} in substantially all cases, and tend to be around +1 '. Errors in computed velocity tend to range around $1 / \overline{/} 2 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. The errors in position are not considered critical for most purposes of the study. However, during one phase of the work it was desired to obtain the trajectories of vehicles through the intersection in detail. It was discovered that this was impossible with data of the accuracy available, since slow vehicles appeared to move with an extremely syncopated rhythm, occasionally jumping backwards. To overcome these problems, the photographs were taken from an altitude of only $500 \mathrm{ft}$. (as opposed to 2000'), with the consequent enlargement in scale and improved reading accuracy.

The Institute of Transportation and Traffic Engineering at UCLA is engaged in film scanning both for their own research projects and on contract to SDC. They too use a Benson-Lehner Telereadex device, but in their case it is connected not to a card-punch but directly to an IBM 1800 computer. When the operator depresses the foot-switch that otherwise would activate the card punch, the computer is interrupted and the newest set of coordinates is read in. The computer immediately performs a validity check on the new data - i.e. it compares the newly read values with the projected location of the vehicle they probably represent, as obtained by extrapolating its trajectory computed from the previous frames. If the new value appears implausible, the computer types a message on a teletype next to the scanner operator to read the car locations in that vicinity again.

The advantages expected of this system when it becomes fully operational are severalfold. First is the minor advantage that data input to the computer is faster. More important are the following: Without the immediate interaction with the computer, operator blunders are not detected until the film data is analyzed. By then the film is no longer in place and can not be accurately repostitioned. Thus, if errors are in a frame are to be corrected, essentially the whole frame must be
rescanned. In the interactive mode, only small areas need to be rescanned. Next, the problem of confusing vehicles is reduced. In tracing vehicle trajectories frame by frame, there is some danqer that two vehicles may be confused (for instance, a car actually passing another may be recorded as having fallen in behind the other). In the interactive mode, the computer may ask for remeasurement when a clear-cut decision appears difficult. It may be hoped that the second set of measurements may give a less ambiguous set of vehicle locations. Finally, the computer may improve operator performance. One might expect the operator to become more careful if the computer asked for frequent rescanning, and alternatively to work faster, if less carefully, if the computer seemed satisfied with her performance.

The UCLA research project for which the data are being utilized is a study of the influence of highway exit ramps on lane changing behavior. The measurements must detect lane changes and their context - i.e. distance from the ramp, traffic density, etc. 70 mm photography covering 1 mile of road is being used. The vehicle locations are being obtained within $+3 \mathrm{ft} .$, which appears adequate for the purpose of the study. The researchers feel that the 1 mile section being considered is probably too short - they might like as much as 5 miles. Such data are out of reach, however, more because of the inability of a helicopter to hover at sufficient altitude than because of film reading problems that might be encountered trying to cope with photography of that scale.

The UCLA system computes ground coordinates from film coordinates on the basis of observed ground marks. 10 to 15 such marks appear in a frame. They are marked on the ground as crosses of 1 1/2' x 16^{\prime} marker strips.

Some error analyses on the scanner data have been performed. 3 frames of photography were scanned 9 times each. Repeatability of measurements was within ± 1 ', but actual ground accuracy is estimated to be only $+3^{\top}$. A UCLA student has also performed as a classroom project a study of reading errors of the omission-false introduction class. Taking his own very carefully obtained results as the standard, he found that the regular operators had performed as follows: 2064 vehicles detected correctly, 74 vehicles falsely introduced, 141 vehicles omitted.

As yet, the UCLA scanning procedures do not record vehicle types (cars or trucks), apparently because of the burden this would place on the operator, although it is planned to do so in the future. No provision exists or is planned for entering into the computer other characteristics of the vehicles, such as color, even though all the film used is color film and even
though such information would be of obvious use in constructing vehicle trajectories, particularly in ambigous cases.

The UCLA workers would consider automatic entry of vehicle type and color information an operationally useful improvement on their system. However, the improvement that they would seek most is in speed. Their rate of data reduction is 1 frame every 15 or 20 minutes. This is roughly the same as the rate cited by SDC, although SDC engineers quoted 500 vehicles/ frame as a typical number, as opposed to $150-200$ vehicles/ frame quoted as typical for the UCLA photography. It may well be that the smaller scale of the UCLA photographs has the effect of slowing down their scanner operators.

Work at the Ohio State University has involved study of traffic features of the most microscopic kind - the formation and dissipation of platoons of vehicles within a traffic stream. Photographs would be taken while flying above the platoon and staying with it. Some 2500^{\prime} of road would be photographed on a 70 mm frame. Greater care than usual seems to have been taken in reading the film (e.g. - film placed between glass plates to prevent warping) and greater accuracies have been achieved. Errors in position of as little as 6" have been claimed, and velocity errors of less than one m.p.h. These results have been achieved at considerable cost in time. It appears that the films have been read with an analytical stereoplotter - an accurate device, but a slow one, since the average reading rate seems to have been $20 \mathrm{sec} / \mathrm{point}$. Such performance appears beyond the resolution power of any but the ultra-precise and very slow automatic scanners.

The applications of aerial photography to traffic analysis that have been mentioned above appear to span the range of accuracy requirements. The list is not exhaustive, but probably sufficiently representative to show how widely automatic scanning techniques might be applied. It would appear that a computer-controlled flying-spot scanner system could be implemented to perform all the tasks described above except the last with accuracy comparable to that of the manual systems. The hardware capabilities of flying-spot scanners are described in some detail in the next section.

The application of the marvels of this hardware can now be done with the benefits of the published results of some 15 years of widely spread work in pattern recognition. This research was originally spurred by USAF interest in automatic target detection, but has since borne fruit in applications to automatic reading of printed text, interpretation of biomedical imagery, etc.

2.2 FILM SCANNERS A SURVEY

This section is principally concerned with the capabilities of devices known for historical reasons somewhat inaccurately as flying-spot scanners. A computer-controlled flying-spot scanner appears to be the only type of device suitable for automatic processing of aerial photographs of traffic. Other candidate devices are mentioned briefly only to indicate the reasons why they are considered unsuitable for this task.

2.2.1 FLYING-SPOT SCANNERS

A computer-controlled flying-spot scanner is in concept a fairly simple device. Its principal parts are, in addition to the computer, a cathode ray tube (CRT) with its associated electronics, optics, a film holder, and a light measuring device, normally a photo-multiplier tube (PMT). The system operates as follows: The computer outputs to the scanner the x and y coordinates of a point on the film to be read. The digital signals of the computer are converted by D/A converters and suitable amplifiers to electrical signals which deflect the electron beam of the cathode ray tube to the appropriate point on the tube face, creating there a point of light. This light is gathered by a lens and focused onto a corresponding point on the film. Depending on the density of the film at this point, a certain fraction is transmitted through the film. This is collected by another lens and directed at the photomultiplier tube, which produces a proportional output current. This current is measured, the measurement converted to digital form by an A/D converter, and read by the computer as input. The computer can then output the next set of x, y coordinates to read the film density at some other point. In particular, the computer may use the density values obtained at the set of points previously read to calculate the next point to examine. This is an important capability, since it may in certain cases greatly reduce the total number of points that need be read for the purpose at hand.

The outline of operation given above omitted a number of practical considerations that impose various limits on the operation of the device and restrict its realizable accuracy and speed. The discussion of these limitations that follows deals only with the case when both high accuracy and high speed are sought simultaneously.

The accuracy of a scanner is a concept that can not be characterized by any one number. Various deviations from ideal behavior occur, with different effects depending on circumstances. First, the resolution of the device is limited.

It appears that currently the "best" practice is to use 5-inch diameter CRT's. The "quality circle" on the face of such a tube, i.e. the area over which the scanning point can be accurately positioned and focused, is about 3-inches across. The best achievable spot size - i.e. the diameter of the light spot on the tube face measured between half-power points (a non-trivial thing to do) - is on the order of .0005" - .001". This means that a grid of 4000 x 4000 reasonably independent points is about the maximum that a scanner of this type can read. Scanners can be built with more addressable points on the grid (for instance, Information International. Inc. has built scanners with $16,000 \mathrm{x} 16,000$ addressable points), but the adjacent addressable points largely overlap. Additional degradation in resolution comes about because of the optics and even because of scattering in the film being read itself. Resolution of optical systems is conventionally expressed in terms of the modulation transfer function (MTF) of the system. The MTF is defined as the gain of the system as a function of spatial frequency (cycles/mm), normalized to one at frequency zero. Information International, Inc. claims that the as yet unpublished results of a survey conducted for NASA, Huntsville, of flying-spot scanners shows theirs to be the best. The performance curve of their device shows MTF of .95 at 30 cycles/mm, . 50 at 50 cycles/mm, and . 15 at 100 cycles/mm. Whether or not this is in fact the world's best scanner, these performance figures do represent the upper limit on achievable resolution. It should be appreciated that such performance is achieved by employing considerable sophistication. Dynamic focusing is used to focus the electron beam in the CRT (i.e. the magnetic focusing field for the beam is adjusted to compensate for changes in the length of the electron path when the beam is moved off axis). The objective lenses are specially designed to be color corrected for the particular phosphor used in the tube and to compensate for the light bending effects of the glass face-plate of the CRT (which is about $1 / 2$ inch thick, for mechanical stability).

The positional accuracy of the spot is also limited. Despite "geometry correction" circuitry, a mathematically perfect rectangular grid of points is not achievable. Some "pincushion" or "barrel" distortion remains, and in addition the x and y axes may not be perfectly perpendicular to each other. These systematic effects can be kept well under 1%, however, and to the extent that they are still significant, can be lumped with the various other distortions that appear in the mapping from ground coordinates to perceived film coordinates and removed by the same set of calculations.

Somewhat more difficult to cope with is the problem of hysteresis. The demands of precision in beam deflection and
focusing are such that they can not be met with electrostatic deflection plates and focus devices, but that deflection and focusing must be done by applied magnetic fields. Even though the magnetic core materials for the coils are chosen to have low residual magnetism and narrow hysteresis loops, hysteresis effects can not be avoided completely. Thus, the precise position to which a spot is deflected depends upon the previous scanning pattern as well as upon its nominal coordinates. The maximum possible positioning error due to hysteresis can apparently not be kept under 1 part in 1000 by design of the hardware (i.e. about 4 spot diameters). If care is taken in programming, however, its effects can probably be effectively eliminated. To this end, any given area of the film must always be approached from the same general direction.

Second-order effects limiting performance seem to abound with any precision equipment. With magnetically deflected scanners, the effects of heating also fall in this class. Since the deflection coils carry substantial currents (several amperes) at large deflections off axis and small currents when the beam is along the axis, they can undergo mechanical deformations due to changes in temperature. These change the effective magnetic fields and therefore the location of the scanning spot. No quantitative estimates for this effect are available. Careful design probably can reduce it. In any case, it is true of both this and the hysteresis effect that while they may affect the absolute accuracy of a measurement and its repeatability, they would not ordinarily affect significantly the measurements of relative placement of objects close together in the film.

In addition to a certain randomness in the positioning of the scanning spot, there is also some randomness inherent in the measurement of the film transmissivity at that spot. The transmissivity of $\mathfrak{\text { film }}$ is the fraction of incident light that passes through it. Since there is considerable variability in the amount of light emitted by the CRT phosphor as a result of a perfectly constant electron beam bombardment $(\pm 10 \%$, randomly distributed over the tube face, and changing as the tube ages), it is necessary in precision scanners to measure both the incident and the transmitted light and compare them to get the true transmissivity. To this end, a beam splitter is inserted in the light path between the CRT and the film. A fixed fraction (~ 10\%) of the light emanating from the CRT is measured by a reference photo-multiplier tube (PMT). The rest is directed through the film and the transmitted part is measured by the main measuring PMT. The quotient of the two readings is the transmissivity of the film. The logarithm of this is the quantity known as the density. Frequently the measurement made is that of density because the human eye seems
to perceive logarithmically equi-spaced steps in light as "equal steps of brightness", and because a better dynamic range can be obtained.

The values read as the intensity of light at either PMT are: random variables in the true statistical sense of the term. At the low light levels that obtain with flying-spot scanners, the fact that light is a stream of discrete photons arriving at random intervals assumes practical signficance. One can no longer think in terms of the instantaneous value of light, but must think instead of an average value over some interval. From statistical theory it follows that the variance between the observed average and the "true average" value will decrease as the period over which the average is computed is increased.

The precise interval needed to achieve a certain mean square error varies with among other things the beam power of the CRT, the phosphor efficiency, the aperture and focal length of the objective lens, and the efficiency of the PMT. In practice it appears that an integration interval on the order of $5 \mu s e c$ is necessary to get reasonably reliable gray scale resolution to about 32 levels. This is approximately the gray scale resolution capability of the human eye at normal ambient light levels.

The speed capability of the flying spot scanner can be defined in terms of the length of the interval between the instants at which the gray scale levels of successive points can be read by the computer. During this interval the computer must perform certain housekeeping chores: store the last light value read, obtain new value for the coordinates, output them, and read the new value of the gray level. The scanner must deflect the beam to the specified location, allow an appropriate interval for the integration of the light, and provide for the analog to digital conversion. Some of the functions of the computer and the scanner can overlap in time. For reading film in a raster scan mode with x incremented by fixed amounts and y constant, a DDP-516 computer (a machine falling in the upper part of the class referred to as mini-computers) requires a total of 14 memory access cycles of $1 \mu \mathrm{sec}$ each per point. Within this cycle the interval between the output of the latest x-coordinate and the reading of the gray level is 9 usec. This is adequate time for the scanner to perform its functions, allowing 2 usec for beam deflection, $5 \mu \mathrm{sec}$ for light integration, and $2 \mu \mathrm{sec}$ for A / D conversion.

Thus, the data transfer rate to the computer in this mode is roughly 7×10^{5} values/sec. This compares favorably with the highest speed of data input to the DDP-516 via magnetic
tape. The highest-speed tape drive available for it operates at 80 i.p.s. with 800 b.p.i. tape, giving a character transfer rate of 6.4×10^{5} characters (6 bits)/ sec - about 10% slower than the scanner.

The calculation above assumed that increments between adjacent spots were small. When the deflections between successive spots are large, substantially longer times than 2 usec must be allowed for the spot position to stabilize. The increased settling time is due to larger oscillations in the deflection currents in response to a larger step input, and even more fundamentally due to oscillations within the magnetic material of the cores of the deflection yokes. The practitioners of the art of yoke design apparently can not fully eliminate this poorly understood phenomenon. In some cases, such as during retrace in raster scanning, the imposed delay may be as much as $200 \mu \mathrm{sec}$. In most cases, the actual time loss should not be significant, because the large changes in deflection would tend to occur at times at which the computer would perform somewhat lengthy data manipulations in any case.

Flying-spot scanners can read color film. Scanners designed to do this must use a CRT with a "white" phosphor (generally P24) and some system of colored filters. Generally, the design is like that of the TRIM scanner at TSC - a wheel with colored filters mounted in it is placed in the light path between the CRT and the film. In operation, a picture is read in turn with each of the three color filters in place. The filters must be moved mechanically whenever a different color is to be read. This arrangement has several advantages: First, only 2 PMT's (reference and reading) with their associated electronics are needed. More important, the device can also be used for output in color. If unexposed color film is inserted in place of the transparency, the color filters between the film and the CRT allow the film to be exposed to the three different colors in turn to produce a color picture. On the other hand, scanners of this configuration become impractically slow because of the required mechanical movement of the filters if one should want to obtain a full-color representation of an individual small area before proceeding to scan the next small area, again in full color. This, unfortunately, is precisely the scanning mode useful for scanning traffic imagery.

An alternate configuration is possible for flying-spot scanners which circumvents this problem. This is the following: A CRT with white phosphor is used. No filters are placed between the CRT and the film (Thus color output is ruled out.). The separation of light into component colors is performed upon the transmitted light by a set of dichroic mirrors. A dichroic mirror is essentially a beam splitter which reflects
light in a certain spectral range and transmits the rest. Two different mirrors can be used to deflect the transmitted light in two spectral ranges to off-axis PMT's. A third PMT can be placed on axis to measure the remaining light. The operation of such a system then involves the reading by the computer of three different values representing the three different colors after each positioning of a scanning spot. Assuming the same equipment speeds and scanning mode as used before in the calculation of the reading cycle time, we find that to input and store 3 -color data would require 22 per point, as opposed to $14 \mathrm{\mu}-\mathrm{sec}$ for only one transmissivity value per point.

2.2.2 OTHER TYPES OF SCANNERS

A number of various other devices can be used to scan film. Among them are the following:

1. TV cameras: These employ camera tubes such as vidicons, image orthicons, etc. All these have photosensitive surfaces on which the image to be scanned is projected. Electric charges gradually build up on such a surface as it is continuously illuminated. These charges are drained off point by point and the currents measured to obtain a measure of illumination at the point. Since the charge read off is a function of both light level and length of time since it was last read, random scanning under computer control is not possible, but instead an image must be read in a regular raster scan mode at a fixed rate. This is not a desirable mode of operation for the problem at hand.
2. Image disector cameras: An image disector tube has a photo-emissive front surface onto which the image to be examined is projected. The emitted electrons are drawn by an electrostatic field backward in essentially parallel paths, such that the current density at any cross-section of the beam is proportional to the distribution of illumination on the tube face. The back of the tube is in concept a conductive plate with a small hole in it. Most of the electrons in the beam hit the plate. Those corresponding to one small area on the photo-emissive pass through the hole. There they are collected and the resulting current is measured. The whole beam emanating from the front surface is deflected so as to cause the current from different spots on the tube face to hit the hole in the back. The deflection circuitry is of the same type as tnat in CRT's, and the needs to integrate the photo-emitted currents to get meaningful average values are the same as in the case of flying-spot scanners, so that operating speeds can be roughly the same for both devices. The disadvantage of image disectors versus flying-spot scanners
seems to be that currently it is possible to obtain resolution several times better with a flying-spot scanner than with an image disector, and that with image disectors there appears to be no way to avoid using mechanically moved color filters to obtain color information about the input image. Image disectors use light from an external source and can, therefore, analyze opaque images (rather than transparencies) as well as realworld scenes. Unlike flying-spot scanners, they can not be used as film output devices.
3. Mechanical scanners: Various mechanical scanners are in use. These all use mechanical motion of either the image or a scanning head to position the scanning spot. Some light source is focused on the spot to be read and the light is then measured by a photomultiplier. The range of such equipment goes from facsimile news photo scanning equipment to microdensitometers. The equipment can be made extremely precise in every way and can at least theoretically read images of any size. Again, it does not appear suitable for the purpose under consideration here because it is too slow for random accessing of points under computer control, and line-by-line raster scans are not a desired computer input.
4. Laser scanners: Various scanners using a laser as the primary light source have been proposed, and quite probably some have been built. They promise very high accuracy, but as yet it would appear that no satisfactory method of random point accessing is available.

3.0 AUTOMATIC DATA REDUCTION-SYSTEM OPERATION

It follows from the numbers quoted for the various presently operating data-reduction systems that to reduce the data for one hour of traffic requires approximately half a man year of film reading effort. Clearly this is bound to hinder any research effort dependent upon the data, and to make it prohibitively expensive. The solution we are seeking is to automate the film reading process.

We feel that the error bounds now achieved in measuring vehicle locations are within the capabilities of an automated system of the type we propose. The most significant errors from the point of view of the users of the data are those where vehicle trajectories are incorrectly joined. Because an automated film-reading system will be able to compare descriptive data of each vehicle detected in a frame with that from the previous frame, we believe that the rate of errors in trajectory matching will be lower in an automated system than in a manual one.

As an ideal solution, one might seek a system which would perform the following functions automatically:

1. Perform image enhancement and other transformations required to suppress background and noise.
2. Impose a suitably rectified reference grid on each picture frame.
3. Delineate the boundaries of highways, bridges, interchanges, intersections and other areas of interest.
4. Locate each vehicle, record its coordinates, and make measurements to be used for identification.
5. Apply automatic pattern recognition techniques to these sets of measurements to classify each vehicle as a car, bus, etc.
6. From the data on two successive frames compute the displacement and instantaneous velocity of each vehicle or group.
7. From data on several successive frames compute and verify vehicle trajectories, and calculate such traffic characteristics as vehicle separation, passing frequency, distribution of vehicle lane changes, and location of bottlenecks.
8. Generate suitable displays and printouts.

In specifying a system to actually implement, we must set our sights a little lower if the system is to be practical.

It is clear that one can not devise an automatic system that accepts pictures of an unidentified area containing no annotation, identifies the landmarks in the picture and scans those subareas that are of interest to the user. Since computers that intuitively sense intent are beyond the current state of the art, any automated system must be provided with a convenient means for operator entry of reference points and limits of the areas to be scanned.

Our approach is to use interactive computer graphics techniques to achieve these purposes, and our system configuration is designed to permit this. Our overall system consists of a computer controlling a flying-spot scanner and a CRT display, and receiving inputs from the flying-spot scanner and a graphics tablet (Figure l).

Figure 1. Transportation Imagery System

We seek improvements over the current systems by shifting onto the computer the largely mechanical tasks. We feel that it might be effort badly spent to attempt to shift onto the computer those tasks to which it is ill adapted and which a man can do easily. It appears that the best film data reduction system should involve man and machine in a symbiotic relationship. The division of labor should be such that the man makes the decisions requiring judgement and/or the ability to reason, whereas the computer performs all the routine data handing.

In the context of the problem at hand, this general philosophy seems to imply the following specific division of labor:

The human should decide what areas of a film frame should be scanned - i.e. locate and delineate for the computer the roads of interest. It would be quite substantial problem to program a computer to recognize a road as such against a background not known a priori. The landmarks on the film serving as ground reference points should also be pointed out to the computer by a human. The human can readily compare a map of the area that has been photographed with the photograph and identify the locations of the references. A computer program with such capability would be difficult to develop and would in general involve an enormous amount of calculation.

Several techniques could be employed to transfer such positional information to the computer. The simplest in the sense of requiring the least equipment would be to place appropriate markings directly on the film. It appears to be relatively easy for a computer to locate large opaque markings on the film. This approach has drawbacks. Marking the film is a somewhat tedious process and difficult to do with both precision and speed. Furthermore, the approach implies handsoff operation once the film is in the scanner. This is undesirable, since any error by the human in marking the film or any misinterpretation of the markings by the computer would go undetected, or, if detected, could not be conveniently corrected.

Our system is designed to allow input of road delineations and landmarks directly to the computer in a manner allowing immediate verification. It is implemented by a display online with the computer and a graphics tablet. We display the picture scanned at rather coarse resolution on the CRT display and superimpose on the display a marker corresponding to the location of the stylus on the graphics tablet. Routines are provided for selecting small sub areas of the photograph being scanned for display in greatly enlarged format at high resolution, and for selecting reference points within these
high resolution sections.
The following steps are envisioned in the operation of the completed system in scanning a set of successive photographs of substantially the same area:

1. The first frame is displayed in coarse resolution. The operator causes the neighborhood of each ground reference to be displayed enlarged and at full resolution and marks the landmark precisely. The ground coordinates of the landmark are supplied to the computer via teletype or other convenient means.
2. The operator then traces the shoulders of any roads in the picture to be scanned. The computer scans in the immediate area of the indicated shoulder, locates the discontinuities in the film presumed to be the shoulder and computes and stores their ground coordinates.
3. The operator then marks the vehicles in the frame. The computer finds the objects marked, and checks that they satisfy appropriate sets of criteria regarding size, etc. before identifying them as vehicles and separating them into such classes as cars and trucks. The computer records each found vehicle's location and size, and its actual digitized representation, to be used in finding and identifying the same vehicle in subsequent frames.

In future development, the computer may be able to perform these steps automatically by scanning along the road searching for vehicles.
4. On subsequent frames, the computer itself tries to locate the ground reference marks by searching in the general areas of the film where they were in the previous frame. It requests aid from the operator only if it fails.
5. With the location of the reference marks known, the computer finds the road to be scanned by applying coordinate transformation algorithms.
6. The computer then extrapolates the path of each vehicle found in the previous frame, and scans the road near the expected new location of the vehicle, (if this location is still within the picture) searching for the vehicle.

To extrapolate vehicle paths, we intend to use the algorithms already developed for trajectory matching in conjunction with the manual film reading systems. The positions of vehicles in a frame are predicted on the basis of their positions in the previous frame and their velocities (computed from their observed motion between the previous two frames). The velocity values are validated by comparison with the average traffic velocity which is deteriined from known empirical relationships between traffic density and speed.

The computer starts searching for a vehicle at the position which has been extrapolated for that vehicle. It locates possible vehicles by detecting deviations from the normal background color of the pavement. Digital spatial filtering techniques and nonlinear gray scale enhancement are used to "improve" the digitized images. When a possible vehicle is found, template matching techniques are used to determine if the vehicle being searched for has been found. As the template in this case, we use the digitized image in the previous frame of the vehicle sought. In matching, we allow for distortions due to turning of the vehicles, but this effect is generally small. If there is not a good match or if the vehicle physically could not have reached the position of the found vehicle, then the computer resumes its search until the vehicle is found. The capability to match vehicles by appearance from frame to frame should assist in trajectory matching in those cases where the present system finds this difficult on the basis of vehicle positions alone.
7. The operator marks all new (i.e. incoming) vehicles in the frame in a manner similar to step 3. After several frames, when the system has been able to deduce what the bare road looks like, the computer should be able to scan the road, locating the incoming vehicles automatically.
8. Finally, data of interest is abstracted and output in a form directly useful to the investigator. It is probable that in some cases routines can be developed that achieve savings in the amount of scanning that needs to be done by determining that some data is of no interest in the given application. For instance, one current study considers only data from periods of steady flow. The computer should be able to evaluate from observing the rate at which vehicles enter the area photographed whether such steady flow exists and
scan only those photographs in which it does. Similarly, one can envision that for studies evaluating the behavior of trucks, the computer would select for scanning only those sections of road in the vicinity of the trucks, etc.

A set of flow charts for the system is shown in the following pages. Figure 2 shows the overall system and Figures 3 to 10 show each of the parts of the system in greater detail. (On the flow charts, solid lines indicate flow and broken lines indicate subroutine calls.)

Figure 2. The Overall System

Figure 3. Scan Next Film Frame and Preprocess

Figure 4. Locate Landmarks in Interactive Mode

Figure 5. Locate Road-Edges in Interactive Mode

Figure 6. Locate Vehicles in Interactive Mode

Figure 7. Determine Trajectories

Figure 8. Relocate Landmarks

Figure 9. Relocate Road-Edges

Figure 10. Relocate Vehicles

4.0 DESCRIPTION OF PROGRAMS DEVELOPED

This section contains a description of each of the programs developed thus far towards implementing the system described in Section 3. Appendix A contains the complete listings of the programs. All programs manipulating pictures assume that the digitized pictures are stored in the computer as sequences of words to be interpreted as follows: M,N I(l,l), $I(1,2), \ldots, I(1, N), I(2, I), \ldots I(M, N)$ where M is the number of rows in the picture, N the number of points per row, and $I(J, K)$ is the gray-level value of the K-th point in the J-th column (i.e. transmissivity of this point when the picture is scanned).

4.I SCAN

The following programs scan and store part of a frame of aerial highway film.

4.1.1 INTERLACED RASTER SCAN

CODE: : ILC
PURPOSE : Performs an interlaced zig-zag raster scan for display.

DISCUSSION: ILC will display a picture on the CRT as it scans it. Interlacing is used. An interlaced scan is one which displays odd-numbered lines and evennumbered lines on alternate sweeps. This method of scan is used to diminish visual fade and thus allow more points to be displayed without significant flicker. A zig-zag scan of the interlaced lines reduces the time for one sweep by decreasing the distance between two successive scan points when the end of a scan line is reached. The order of a typical scan is as follows:

CALLED BY :
CALL ILC,YTOP,YBOT,XLFT,XRGT,DELT
where
YTOP, YBOT,XLFT, XRGT = the scan boundaries DELT = the spacing between scan points

METHOD : The zig-zag is accomplished by a "go left" and a "go right" loop. At the end of a scan line, the appropriate Y deflection is made to insure interlaced scanning.

SIZE : 1458 locations
4.1.2 STORE PICTURE

CODE : STO
PURPOSE : To scan a picture segment using the TRIM scanner and store the digitized representation in core in standard form.

DISCUSSION: This is the basic routine for scanning and digitizing a picture. The maximum picture size that may be scanned is determined by the core memory available. The largest contiguous block possible is between octal locations 20,000 and 37,777 , which accomodates a square picture of 90×90 elements.

CALLED BY	CALL STO,YTOP,YBOT, XL,XR,DELT,LOC where YTOP, YBOT, XL and XR denote the limits of the area to be scanned, DELT the spacing in terms of minimum TRIM deflection steps, and LOC the first core location for storing the picture.
METHOD	The area specified is scanned in conventional raster fashion. The minimum delay is allowed for deflection currents to settle between adjacent points (medium delay during the retrace). The intensity values are stored as read (i.e. without being shifted), or with arbitrary scaling or shifting. Such scaling must currently be provided for by modifying the program; the calling sequence does not provide for specifying any scale factors.
SIZE	1108 locations
4.1.3 PIC	RE AVERAGING
CODE	AVG
PURPOSE	To scan a picture segment using the TRIM scanner and add the intensity values obtained to the current contents of memory.
DISCUSSION:	Any digitized representation of a picture obtained by scanning will be corrupted by additive random noise. The signal-to-noise ratio may be improved by scanning repeatedly and averaging the values obtained. Calling STO once and AVG $\mathrm{n}-1$ times will leave in core the unnormalized average values over n scans. The advantage of this procedure over repeating the reading n times during one raster scan is that it protects the CRT phosphor from overheating.

CALLED BY :
CALL AVG,YTOP,YBOT,XL,XR,DELT,LOC where the calling parameters are the same as for STO.

METHOD \quad Essentially the same as for STO.	
SIZE	: III_{8} locations

4

4.2 DISPLAY AND PRINTOUT

DIS will display a stored picture, and PMD and PML will printout different representations of it on the line printer.
4.2.1 DISPLAY AND CALL

CODE : DIS
PURPOSE : Displays a stored picture, and calls the following functions of the displayed picture:

Contour trace (CRL, CRG), Oblique scan (OBL), Line-printer printout (PMD, PML), Road-edge contour trace (CRL, CRG), and Vehicle property determination (SZC).

DISCUSSION: After a selected area of the picture has been scanned and stored by STO and AVG, DIS will display it magnified to any desirable size. This enables close study of the picture.

It is used, for example, in landmark identification (LMI) where the neighborhood of the landmark is displayed enlarged to allow precise marking of the landmark.

DIS is also used to call other routines which perform functions on the stored picture. Printouts of the displayed picture can be generated. A rectangular area of the picture at any oblique angle can be picked out and redisplayed. An object in the redisplayed picture can be isolated by contour trace. A road-edge in the picture can be followed. A vehicle can be picked out and contour traced, and then its size properties and center can be found.

CALLED BY :
CALL DIS,YDIS,XDIS,DDIS,LOC where
(XDIS, YDIS) = the upper left point of the display DDIS $=$ the distance between display points
LOC $=$ the location of the stored picture to be displayed

METHOD : DIS goes through the stored raster and displays the stored picture. To call other routines, Senseswitch 1 is set, whereupon "SWT=" is printed on the teletype. The operator types in a value which switches the program to any of five routines:

On SWT $=2$, the operator types in
$(X O, Y O)=$ the initial point of the contour trace
THSH $=$ the threshold
and the contour trace of an object (in a rectangle found on the last oblique scan) is displayed. If (XO, YO) is not a contour point, a series of ten points directly above it are tested to find a contour point. If none is a contour point, another (XO, YO) can be tried.

On SWT = 1, the operator types in
(DXTP, DYTP) $=$ the slope of the oblique scan lines
NROW, NCOR $=$ the number of rows and column in the scan
and an oblique rectangle is picked out and redisplayed. The initial scan point of the oblique scan was previously chosen by stylus in the original mode (i.e. when SWT = 1).

On SWT $=0$, the displayed picture is printed out in two forms: light-intensity values, and gray levels.

On $S W T=-1$, we return from any of the modes called by SWT to the original display mode (as when DIS was originally called). In this mode, an initial point can be set by stylus for the oblique scan or for the road-edge contour trace.

On SWT $=-2$, the operator types in
THSH $=$ the contour trace threshold
LNTH $=$ the number of points to be traced
and the computer will trace a contour starting with a point previously set by stylus in the original display mode (i.e. when SWT = -l). If the initial point is not on an edge, the twenty
points above it are tested and if none is a contour point, another THSH can be chosen. The contour found will be displayed brightly superimposed on the original DIS display. If the initial point is near a road-edge, the road-edge will be displayed, with LNTH determining how many points in the edge will be displayed. If the initial point is on a vehicle, and if LNTH is greater then the number of points in the contour of the vehicle, then the vehicle contour will be displayed as a closed curve superimposed on the DIS display. At this juncture, if the stylus is depressed SZC will be called. The operator will type in

DELX, DELY = the slope of the center line of vehicle
and the teletype will print out
LNTH $\quad=$ the length of the vehicle
WDTH $\quad=$ the width of the vehicle
CNTR OF EXTENT = the center of extent point of the vehicle
CNTR OF GRAV = the center of gravity of the vehicle based on its contour points

The center of extent is defined as follows: the extreme points of the vehicle in the direction of the center line, and the extreme points of the vehicle in the direction perpendicular to the center line are found. These four points determine a rectangle which encloses the vehicle, and the center of the rectangle is defined to be the center of extent of the vehicle.

EXAMPLE : The following five photographs illustrate the calling of DIS by SFW, and the calls of DIS. This sequence uses several of the routines that have been written. Figure 11 shows a scanned area of highway (as produced when ILC is called by SFW). SFW calls STO and AVG to store the central section of the scanned area, and then SFW calls DIS. DIS displays the stored central section enlarged, as shown in Figure 12. The operator then chooses a vehicle, in this case the vehicle in the upper center of the enlarged section, by placing a cross on the vehicle by stylus (Figure 13). The operator calls the road-edge contour trace which traces the edge of the vehicle and shows it superimposed upon the display (Figure l4). The operator can also call

Figure 11. Area of a Highway Photograph Scanned by ILC when called by SFW

Figure 12. DIS Display of Stored Central Section of Scanned Area

Figure 13. DIS Display with a Cross Placed on the Selected Vehicle

Figure 14. Contour of Selected Vehicle Determined and Displayed
the oblique scan which will pick out a small section of the display at any angle and redisplay it. Figure 15 shows the small section containing the vehicle from the upper center of the display being redisplayed in "normalized position" (i.e. with the vehicle facing upwards).

SIZE $\quad: \operatorname{llF}_{8}$ locations
4.2.2. PRINT MATRIX

CODE : PMD, PML
PURPOSE : The line-printer prints a matrix from a stored picture, showing either an alphabetic digit (PMD) or a gray-level character (PML) for each point of the picture.

DISCUSSION: To get a hard-copy version of a stored picture, it is convenient to be able to print-out via lineprinter a matrix corresponding to the stored picture. PMD will print a matrix where each position represents a picture point and where the character at each position represents the light intensity of the picture point. PML, a similar routine, can be used for a gray-level line-printer printout, where the character at each matrix position has a visual gray-level proportional to the light intensity of the point. In this case, the print-out will visually recreate the stored picture.

EXAMPLE : An example of each print-out is shown in the Figures 16 and 17.

0

Figure 15. Selected Oblique-Angled Picture Section Redisplayed in "Normalized Position"

 WWWYWXXZXZ4FVZ535Y 3534453 YGZYWVWWWSWWTJWWVWWVWWVYWSAKKGEGGFEHKGDRATWYWWWWZZ?YYSWT

 ISSSISPSSVCS45555554555554ZMEWWTWVWXWXYYZXWYWVWVVSNL EEEEEEGILLQRWVWSRTXIEAGXVUVY
 $22 \backslash A 2 B E D A A B J O T Q J L Q T U W S Q P O L I F B E D D H H H E G E H G F E B E C G I I I E Z Y O K W G G H J A J X 5 A D E E Q X X Y 5 A E K I J O O L$ J YHK I JUNKRPQQZ SWT SRTXQSUST TPOR JOSQSRTURQPPPSUTZWWSK 5WMdd IHdMQXZFLOSKDG15@F SXVVUTZ $1 Z Z X \times 23 Y 232434234454333222433123333354545332554452$ PDYONGKKMQIZGQRVZSNCBCMR 3334444 55454555555555555555555445555555555555555555555554 QIZRNQGLMOY5 JTWIIUKDADRW3453232 55555554555555555555555555455555545545554455555431 ODIWQQDNQPWZGPSXWPGDBGPWVZ2YIVU 5554533535455554112344333533454222221 XWWWU1 IZTTNQNGSXWSQQPOTW\&AHMNOICCAAEKKLMNLLH YXXVXUSUWUTPRUPQMQQTSTSLVWPPWWOLJLOMMUJGEJKIKDCBBBZWWSTSRSOTVYYKABABZ32YIGEEDEEGZ

 HFHDDDCCB@WJQSRJZZXY XWWYWSVXWWVYXJQRYJWWWWWYJSSRSRJWYJWYYJWWXWWJWYXXVYZXWZXZZZYX
 KMKHIKKLKE\&XZQABDEFDDEAAB\&FBEQDEGECDEEFFCEFEFGGFDCGJJGJHIHKILMML JFIE JHHLLI JPMMINK PNNMNOPPMHEBE I OQQNOOMLMOLOPOONURPLONTRPMOOLJLK JLMOONNPRONPOWWTSOQMKMNORPPNPTOOPO RRTRQTSRPNJJMMMOSUVUTTSSWSRZUTUWUTWXVZUTRWGMOMMOOOPONPTSPNRZXWTSQSNMNPNOQOOQRTR S SRR SPQQPQQPPPPOQR TWWVUTVTWXZXWTT TUWWWV T ONNOLNPQQPPPKNPRLNNSVUTQPPJINNNPQLLNQPNNM SRPPQTOPQQRPQPMPOQUURR SST SVWVR SRRUSQT TPQNLKK JK JOONONLGKMKLKPQRKONHDHK ILMMI IHLKKLK OOOOQPNNORQPMNMOQMR SQPOSPNRPPQQSOQQNNUNOKGHGIHKMNMLLGHFHIHHJIHGIIGCDGIILLKHFHIGFI NNLOOML MONLOLLLNL I MOK JLNPPMMMMNNPPMKKLKI IHFEGEGK JM I JDBEGEEEBE5BFFGCEGGIKI JFDFFBCC FHHI IKHJIHIGGFDJGEFGFCFJJHJEEFIMNIGGHHFECCBFEBCFEFEDB54545A3333DHLLJMPSYSOEC@4K34

 VXWYWWWYYZXWYYWWTWVYXXYZYXXXXXYWYYXWVTWIZ

 WWYYVVYZYXYYVWQRPNOQPRTRRSWVXWYTWYWWTSWVWVYSTRRSTWTQRRORRDDPRTZDHVX $332 Z 43 X R E X W S S$

 QSVFV4432355555555555555FWRJWSTSQRPRSRGSSWSSJWWJVWWWWTJWJTSRRSQSWYUVJUXWWWRSUSSSS

 $1 \$ 454535 A 53233 A B A Q D 441225 A D D F C Q C 542 X X W Y X X d 2211$ diZ2ZZWVWWWWYXWWXYXXWWWYXWXXWWYWTVW 1 $2231222322 X X X 2250 F J E 5$ GEEHIJINLLLCZYVSTVVWXYJWWWWWWXJRSVSWWWVVWVWJTSJJWXYVJWTSJJR ZXYYXZYYXXWVYWVZAKUWVIGPVSWWY224WHKXVITJVWSBTSQWSWSTJRSTJQURSTSTRSQRQRTWWYRESSRRE

 AB5CGDDACAADIHFI INOPLKKHI JJKNRUQR I CCDEECEACHKKGFCDAADEECCODGI I EBCDBAAE\&COBAA EGEMNL JHGIF JLNJJNNMMKNIIHFHHJMMJLKJHIIHIFEGJJNIKKIHEEGIHCEFI INLKIHHLJFHIHHHGFIJGF INONOPOILLLOPNPONOMLNRPILKJJNKKL JNMOL JLLLK JLPONMON JNM JJIEFGJIKMLMONOOKMLKK JJKKONG IRSQOQOGPPNQSSPNPNNOQTRNONNNLLLMNONPOPMOOMOOOPPNPRMPOMJGEHI JJJJKLPRQNLMPLLL JMOOOL MRRR ЭPR STPQQQOPONPPPTVRSTQPQNKKNPRQRQNNNNPLNORPNNONMOLHEEHGGEGHI JNPPOMMKLJLMOOPML MOPMNLNRTSPRNQMMKOMPPT SQTPPOKLJIMMNPML ILNLJL JLMEGGI JJGF EBACAACDGFKMMMI GGF GFHKKI GF LLI I I IKNKLGKIKEGEHKII JMI IKJFCEFFMLHHHODJGGDEBB@ム\& \&

Figure 16. Light Intensity Print-out: The Symbol at each Point Signifies the Numerical Light-Intensity of the Point

 opgepopgepger． 00日0000080e． 0800000002e 8090890900

 803888808308e！

 cerbererbereecc crapeqc
－ 1
leepec

ciebrbababobebact

 cccccccccccccicci（i M

 ceobere

號 ace日egerere

 bobee～－ BEBBC obee勛官 obeer
－

beber（icci

日Bo日⿹勹巳ect

日everep

 gebegeepergeegoper － copereegegeprobe gepergorepergeper

明昰

CALLED BY :
CALL PMD,PICT
or
CALL PML,PICT
where
PICT is the first location of the stored picture.
METHOD: : PMD will print an over-printed character corresponding to 64 light intensity levels using the following coding for the 64 levels $=@, \mathbb{A}, \ldots$, Z, 1, 2,..., 5, @, A, B,..., Z, l, 2,..., 5. Note that the first group of 32 levels is the same as the second but the first has an over-printed period.

PML will print an over-printed character corresponding to selected ranges of light intensities to give a gray-level appearance. The overprinted characters pairs used are @B, @@, @C, CI, CC, ((, ,_, and (where here stands for blank). This gives the gray-level characters B, @, ©, ©, C, (r, , and

When either routine is called, it reads through the stored picture row by row. For each point in a row, it computes or finds in a table the first character to be printed of the two overprinted characters that correspond to the light intensity level of the point. That character is stored in a buffer, and when the characters for the whole row have been found, the contents of the buffer is printed by the line-printer. A line-feed command is not given, and the process is repeated on the same row for the second of the two characters per position. After the second character is printed over the first, a line-feed instruction is executed and the next row of the stored picture is set to be printed.

SIZE : 516_{8} instructions

4.3 FILTER

The following routines are used to sharpen a picture by filtering.

4.3.1 LAPLACIAN CALCULATOR

CODE : LAP

PURPOSE : To compute the Laplacian of a picture segment stored in core in standard form.

DISCUSSION: Computation of the Laplacian is one of the standard edge enhancing operations that can be performed on a picture. The Laplacian of a picture $I(x, y)$ is

$$
\nabla^{2} I(x, y)=\frac{\partial^{2} I}{\partial x^{2}}+\frac{\partial^{2} I}{\partial y^{2}}
$$

The numeric approximation of the Laplacean for a picture sampled over a square grid with spacing h is

$$
\begin{array}{r}
\nabla 2 I(i, j)=\frac{1}{h} 2[I(i+1, j)+I(i-1, j)+I(i, j+1) \\
+I(i, j-l)-4 I(i, j)]
\end{array}
$$

CALLED BY :
CALL LAP,LOCP,LOCL
where LOCP is the first storage location in core of the picture to be operated upon, and LOCL is the first storage location in core for storing the Laplacian, also as a picture in standard form, but with 2 fewer rows and columns. LOCL may be the same as LOCP.

METHOD : The Laplacian is evaluated by the application of the equation given, but without the division by h^{2}.

SIZE : 708 locations
4.3.2 COMBINE PICTURES ON DISK AND IN CORE

CODE : CDC
PURPOSE : To compute the weighted sum of segments of two pictures, of which one is stored on disk and the other in core, and to replace the picture in core with the computed result. If $I_{1}(x, y)$ and $I_{2}(x, y)$ are the source pictures, the resulting picture will be an NX x NY segment

$$
\begin{aligned}
I_{3}(x, y)= & \left(C_{1} I_{1}\left(x+d x_{1}, y+d y_{1}\right)\right. \\
& \left.+C_{2} I_{2}\left(x+d x_{2}, y+d y_{2}\right)\right) / C_{3}
\end{aligned}
$$

DISCUSSION: This routine was written to be utilized in constructing filtering functions - e.g. to add a picture and its Laplacean, etc.

CALLED BY:
CALL CDC,U,C1,DY1,DX1,LOC,C2,DY2,DX2
MDAC C3,NY,NX
where
U is the literal unit number associated with the disk file on which picture I_{1} is stored. LOC is the symbolic first address of the picture I_{2} in core (and becomes the address of the first location of the resulting picture I_{3}). The other calling parameters are defined by the equation above.

METHOD : The program loops through line by line, and point by point within lines. The computed values are stored in place of the picture stored in core. The dimensions of the source pictures and the offsets and dimensions specified as calling parameters are checked for compatability. The routine types ERROR 700 and returns to TOP if they are incompatible. The routine assumes that a buffer BUFA of sufficient length to hold a complete line of the picture on disk has been defined externally.

SIZE : 2728 locations

4.4 INTERACTIVE OPERATION

The following programs involve interactive operation of the system.
4.4.1 MAIN PROGRAM (STYLUS FOLLOWER)

CODE : SFW
PURPOSE : This is the main program of a demonstration package. It follows the graphics tablet stylus with a cross and an interlaced scan, moving window and calls several other routines.

DISCUSSION: SFW will display a cross (CSS, CSD) at the position corresponding to the stylus and will display an interlaced scan (ILC) of part of the frame. When the stylus is depressed, the interlaced scan will be centered at the stylus point. This is used by the operator to pick out the part of the frame
(i.e. the sector of highway) that he is interested in. Then, on sense switch 2 set, STO, AVG, and DIS are called in succession. STO and AVG store and average a picture section, and DIS displays it enlarged. DIS then can call routines to print-out (PMD, PML), oblique scan (OBL), contour trace (CRL, CRG), and determining properties (SZC).

CALLED BY : Executed directly.
METHOD : With all sense switches down, SFW displays a small section of the frame (by calling ILC). The display is centered at the last point where the stylus was depressed, and this is continually checked. Thus, the displayed section can follow the stylus, giving a "moving window" effect. With sense switch 4 set, the display is enlarged three times in width and in height by calling ILC with different parameters. To prevent excess blinking of the image, this larger section is displayed at coarse resolution. An example of such a scanned section is shown in Figure 2 of Section 4.2.1. With sense switch 3 up, the large and small displays are alternated, thus showing a detailed inner square surrounded by a coarse outer square.

On sense switch 2 set, STO, AVG, and DIS are called, and the smaller displayed section is stored and redisplayed enlarged.

SIZE : 4028 locations
4.4.2 SET CROSS, DISPLAY CROSS

CODE : CSS, CSD
PURPOSE : Displays a cross (i.e. a "+") at a given location on the CRT.

DISCUSSION: Display of a cross is useful for tracking the data tablet stylus, for choosing a desired point on a picture, and for displaying a chosen point or points superimposed on a picture.

CALLED BY :
CALL CSS,N,DELT,Z where
$\mathrm{N}=$ The number of displayed points in the horizontal (or vertical) line of the cross.

DELT = the separation between cross points.
$Z=$ the intensity of the cross display. and

CALL CSD,XMID,YMID
where
(XMID, YMID) $=$ the mid point of the cross.
EXAMPLE : If CSS is called with parameter values:
$\mathrm{N}=5$
DELT = 2
$Z=13777$
and CSD is then called with parameter values:
$\mathrm{XMID}=25$
YMID $=53$,
the display will be centered at $(25,53)$ and will look as follows:

0	0	0	0	x	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	x	0	0	0	0
0	0	0	0	0	0	0	0	0
x	0	x	0	x	0	x	0	x
0	0	0	0	0	0	0	0	0
0	0	0	0	x	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	x	0	0	0	0

where
X = bright point
$0=$ dark point
METHOD : CSS sets up the size and brightness for a cross. CSD is then called and displays this cross at the desired position.

CSS need be called only once, and it will set up a standard cross for use with CSD throughout the program.

The cross cannot have equal length legs if both DELT is odd and N is even, and therefore this should be avoided.

SIZE		1058 locations
4.4.3	READ	MESSAGE
CODE	:	RMR
PURPOSE		To read alphanumeric input from teletype and store it in core packed 2 characters/word.
CALLED B	BY	CALL RMR,-N,LOC where N is the number of words reserved for storage beginning at LOC. RMR will read up to 2N characters.
METHOD		The system routine for reading characters via teletype is invoked. RMR returns to the calling program after either 2 N characters or a carriage return have been typed. Any unused storage locations after the final character are filled with blanks.
SIZE	:	$5_{8}{ }_{8}$ locations
4.4.4 R	READ	NUMBERS
CODE	:	RNR
PURPOSE	:	This routine accepts via teletype and leaves in the accumulator either decimal or octal integers. Octal numbers must be identified as such by preceding apostrophe.
DISCUSSI	ION:	The system routines provide for reading either decimal or octal numbers. RNR allows the operator to select the input format at run time.
CALLED B	BY :	JST RNR
METHOD	:	RNR normally invokes the system routine to read a decimal number. If the first character typed is an apostrophe, RNR invokes the system routine to read an octal number.
SIZE	:	15_{8} locations
4.4.5 T	TEXT	MATCHING
CODE	:	MCH

PURPOSE	To compare two strings of alphanumeric characters, one given explicitly in calling sequence, the other stored in some specific location in core. Return is to instruction immediately following calling sequence if texts match exactly, to next succeeding instruction if they do not.
DISCUSSION:	MCH is intended for use in conjunction with RMR for interpreting operator instruction via teletype during program execution.
CALLED BY :	The macro-instruction MATCH n,LOC [or LOC*], TEXT which expands to JST* MCH= DEC -n DAC LOC [or DAC* LOC] BCI N,TEXT where n is the number of words used to store each string of text (of up to $2 n$ characters) and LOC is the first core location of the unknown string.
SIZE	278 locations
4.4.6 PARAM	TER READING
CODE :	PRR
PURPOSE	This routine accepts parameters from an operator via teletype in an interactive way.
DISCUSSION:	At various times during the development of programs it has been necessary to try different combinations of values for various parameters in order to achieve the desired performance. The routine PRR provides for convenient input of such values in the various circumstances that have arisen in practice. Alternate sets of parameters can be entered, to be used as the occasion arises. The parameters are stored in a core array as follows: Assuming that there are n sets of m different named parameters, the block is defined by the assembly language statements BLOK DEC n DEC m BCI 2, PARI PARI BSS m PAR2 BSS m BCI 2, PAR2
	l'ARN BSS m

This sequence of statements can be created by the macro
BLOK PARAMETERS, n, m, PARI, PAR2...PARn
where m and n are (literal) integers, and PARj may be any symbolic variable name of 4 or fewer alphanumeric characters.

CALLED BY :
CALL PRR,BLOK,k
BCI k,MESSAGE TO BE TYPED
where BLOK identifies the parameter block
METHOD : When called, PRR

1. Types the message specified in the calling sequence
2. Types "SET NR."
3. Reads number input by operator. If this is greater than is specified in defining BLOK, it types ? and accepts another value.
4. Given a valid set number, PRR types "WHICH" and lets operator type option selected. If operator types
a. "ALL", the routine types the variable names in order, and accepts a numeric value (decimal, or octal if preceded by ') for each, then returns to calling program.
b. "NOW", the routine types the variable names and their current (decimal) values, then types "WHICH" and awaits new operator input.
c. "COPY", the routine types "SET NR.", accepts a number and sets the value of each parameter in the set under consideration to the value in the set given, then types out the variable names and values, awaits new operator input.
d. Any of the parameter names, routine acknowledges by typing "=". and accepts numeric value, awaits next input.
e. "NEXT", routine goes to step 2.
f. "NONE", routine exits to calling program.
g. Carriage return or carriage return following arbitrary number of spaces, routine exits to calling program.
h. Anything else, routine types question mark, awaits new imput. $P R R$ invokes the subroutines RMR, RNR, AND MCH.

SIZE : 3258 locations

4.5 TEMPLATE MATCHING AND LANDMARK IDENTIFICATION

LMI allows the operator to identify landmarks. PDC is used to find the template match between two pictures. PAR is called by PDC.

4.5.1 LANDMARK IDENTIFICATION PROGRAM

CODE : LMI

PURPOSE : To allow the operator to interactively identify landmarks in picture currently being scanned by TRIM.

DISCUSSION: LMI permits the operator working with the stylus on the graphics tablet to select sub-areas of the picture being scanned for display enlarged, and to select and identify by number points within these sub-areas. Their coordinates are stored and remain available for use by other routines. LMI is intended for use in marking landmarks in any given frame, and for interactively marking vehicles.

CALLED BY : JST LMI
METHOD : The routine provides the following sequence of steps for marking a point:

1. The full frame of imagery in the scanner is displayed on the monitor scope. Points marked already are shown by crosses. The scanner during this stage is in the READ mode. The operator may move the stylus to select the sub-area to be displayed in detail. The position of the graphics stylus is indicated by a small intensified area about it. An example is shown in Figure 18.
2. When the operator depresses the stylus, the selected sub-area is scanned and digitized at maximum scanner resolution. It is then displayed enlarged,(see Figure 19), with the scanner in the DISPLAY mode.
3. The operator may select the point to be marked by moving the stylus on the graphics tablet. The position of the stylus is marked by a cross superimposed on the image as shown in Figure 19. When the stylus is depressed, its location in terms of the full-frame coordinates is computed and assumed to be the location of a landmark. The routine will
request its identifying number by typing LNDMK NR = on the teletype and accept an integer $0 \leq i \leq 20$. The landmark coordinates will then ${ }^{-} \bar{e}$ stored in the symbolic locations LMIX $+i$ and LMIY + i. If the integer typed in is outside the proper range, the routine will type a question mark and accept another value. After a valid number has been read, the routine returns to step 1 , with the new landmark now shown as a cross (as in Figure 20).

Raising sense switch 1 during the display of the full frame causes a return to the calling program.

The routine LMI invokes routines CSS, CSD, ILC, STO, AVG, DIS, AND RNR.

SIZE : 3448 locations.

Figure 18. A Full Frame is Scanned and a Subarea is Selected by the Brightened Square

Figure 19. The Selected Subarea is Displayed Enlarged, and the Selected Landmark Point is Chosen with the Cross

Figure 20. The full Frame is Displayed Again with the Cross Indicating the Previously Determined Landmark
request its identifying number by typing LNDMK NR = on the teletype and accept an integer $0 \leq i \leq 20$. The landmark coordinates will then be stored in the symbolic locations LMIX + i and LMIY + i. If the integer typed in is outside the proper range, the routine will type a question mark and accept another value. After a valid number has been read, the routine returns to step 1 , with the new landmark now shown as a cross (as in Figure 20).

Raising sense switch 1 during the display of the full frame causes a return to the calling program.

The routine LMI invokes routines CSS, CSD, ILC, STO, AVG, DIS, AND RNR.

SIZE : 3448 locations.

Figure 18. A Full Frame is Scanned and a Subarea is Selected by the Brightened Square

Figure 19. The Selected Subarea is Displayed Enlarged, and the Selected Landmark Point is Chosen with the Cross

Figure 20. The full Frame is Displayed Again with the Cross Indicating the Previously Determined Landmark
4.5.2 PICTURE COMPARISON (DISK AND CORE)

CODE : PDC
PURPOSE : To compute the cross-correlation of two picture segments, one on disk and one in core. The quantity computed is

$$
\sum_{j=1}^{N Y} \sum_{k=1}^{N X} D(D Y 1+j, D X 1+k) C(D Y 2+j, D X 2+k)
$$

where $D(i, j)$ is the intensity of the (i, j) point of a picture stored on the disk, and $C(i, j)$ is the intensity of the (i, j) point of the picture in core.

DISCUSSION: Given a picture C and another picture D such that

$$
D(x, y)=a C(x, y)+b
$$

where a and b are constants, and letting R be a region of the x, y plane: the quantity

$$
M(\xi, \zeta)=\frac{\iint_{R} C(x, y) D(x+\xi, y+\zeta) d x d y}{\left.\iint_{R} D^{2}(x+\xi), y+\zeta\right) d x d y}
$$

will have its maximum at $\xi=\zeta=0$ for $a l l a$ and b ($a \neq 0$). This relation is well known. The proof is based on the Schwartz inequality.

If the picture $D(x, y)$ also includes additive, uncorrelated noise, then the expected value $E[M(0,0)] \geq E[M(\xi, \zeta)]$ for $\xi, \zeta \neq 0$. The routine PDC computes the numerator of the function $M(\xi, \zeta)$, replacing integration by summing.

CALL PDC,U,DY1,DX1,LOC,DY2,DX2,NY,NX where
U is the literal number of the disk file containing picture D
LOC is the first storage location of the picture C stored in core in standard form.
The significance of the other calling parameters is clear from the description above.

METHOD : The program accumulates the double sum, looping first row by row and within rows point by point.

The answer is returned as a double precision number in the combined A,B register. The C bit is set if an overflow occurs during computation. Checks are performed to verify that the calling parameters are compatible with the dimensions of the stored pictures. If not, the routine goes to TOP, typing ERROR 701. The routine requires that a buffer BUFA of sufficient length to contain a full line of the picture on the disk be externally defined.

SIZE : 146_{8} locations
4.5.3 PICTURE AUTOCORRELATION ROUTINE

CODE : PAR
PURPOSE : To compute the quantity

$$
S(P I C)=\sum_{i=D Y+l}^{D Y+N Y} \sum_{j=D X+l}^{D X+N X}[I(i, j)]^{2}
$$

for a picture, where $I(i, j)$ is the gray level value at the j-th point of the i-th row of a picture stored in core beginning at location PIC.

DISCUSSION: \sqrt{S} is a normalizing factor in computing the degree of match between two picture segments by means of cross-correlation. The result is stored as a double-precision number in ANS and ANS+1.

CALLED BY :
CALL PAR,PIC,NY,NX,DY,DX,ANS
METHOD : The routine accumulates the sum, going through the picture row by row, and point by point within each row. Locations '500 and '501 are used for temporary storage. No check is made as to whether DY, NY, DX, and NX are compatible with the size of the picture segment stored.

SIZE : 100_{8} locations

4.6 OBLIQUE SCAN

The following programs provide the facility to scan an oblique rectangle from a stored picture and to draw a line at any oblique angle.
4.6.1 SET DRAW LINE, DRAW LINE

CODE : DLS, DLN
PURPOSE : Draws the best staircase approximation to a line at a given slope from a given point.

DISCUSSION: The ability to draw a line at a given slope is needed in oblique scanning (see OBL) and other applications. Since the scanned picture points are points on a square grid of finite resolution, this involves finding a discrete approximation to a straight line. It was decided to use a series of points to approximate the line such that each point in the series would be the one of the eight points adjacent to the previous point in the series that is closest to the line's continuation. This is equivalent to drawing the real line across the digitizing grid, and choosing the closest grid point whenever the real line crosses a grid line.

CALLED BY :
CALL DLS,XI,Y1,DELX,DELY where
(Xl, Yl) $=$ The initial point on the line
DELY $=$ The signed change in Y for each signed change in X of DELX
and
CALL DLN
EXAMPLE : If DLS is called with
$(\mathrm{Xl}, \mathrm{Yl})=(1,8)$
DELY/DELX $=-5 /+3$

Then if DLN is called repeatedly seven times, it will successively return the points as indicated below:

METHOD : DLS sets up the parameters for a new line. Then DLN is called repeatedly, and each time returns (in the A and B registers respectively) the X and Y values of the next point of the digitized line. The following algorithm was devised to compute the digitized line:

Given: ΔX and ΔY, the signed slope components, and (X1, Yl), the initial point.

Let: $\quad \delta \mathrm{X}_{\mathrm{k}}=\mathrm{x}_{\mathrm{k}+1}-\mathrm{X}_{\mathrm{k}}$
$\delta Y_{k}=Y_{k+1}-Y_{k}$
(Note: by definition of the digitized line both $\delta \mathrm{X}_{\mathrm{k}}$ and $\delta \mathrm{Y}_{\mathrm{k}}$ can only have values +1, 0, or -1.)
then:
(1) For $|\Delta X| \geq|\Delta Y|$, i.e. Octants 1, 4, 5, and 8:

$$
\begin{aligned}
& \mathrm{T}_{1}=\mathrm{c} \\
& \mathrm{~T}_{\mathrm{k}} \geq 0 \rightarrow \quad \delta \mathrm{X}_{\mathrm{k}}=\operatorname{sgn}(\Delta \mathrm{X}) \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \mathrm{T}_{\mathrm{k}+1}=\operatorname{sgn}(\Delta \mathrm{Y})
\end{aligned}
$$

where:

$$
\begin{aligned}
& \mathrm{a}=2|\Delta Y| \\
& \mathrm{b}=2|\Delta \mathrm{Y}|-2|\Delta X| \\
& \mathrm{c}=2|\Delta \mathrm{Y}|-|\Delta X|
\end{aligned}
$$

(2) For $|\Delta X|<|\Delta Y|$, i.e. Octants 2, 3, 7, 8

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{l}}=\mathrm{c}^{\prime} \\
& \mathrm{T}_{\mathrm{k}}>0 \rightarrow \quad \begin{array}{l}
\delta \mathrm{X}_{\mathrm{k}}=\operatorname{sgn}(\Delta \mathrm{X}) \\
\\
\\
\\
\\
\mathrm{T}_{\mathrm{k}+1}=\operatorname{sgn}(\Delta \mathrm{Y})
\end{array}, \mathrm{T}_{\mathrm{k}}+\mathrm{b}^{\prime}
\end{aligned}
$$

$$
\begin{aligned}
T_{k}<0 \rightarrow \quad \delta X_{k} & =0 \\
& \delta Y_{k}=\operatorname{sgn}(\Delta Y) \\
T_{k+1} & =T_{k}+a^{\prime}
\end{aligned}
$$

where:

$$
\begin{aligned}
& \mathrm{a}^{\prime}=2|\Delta X| \\
& \mathrm{b}^{\prime}=2|\Delta X|-2\left|\Delta Y^{\prime}\right| \\
& \mathrm{c}^{\prime}=2|\Delta X|-|\Delta Y|
\end{aligned}
$$

In the above
$\operatorname{sgn} Z=\left\{\begin{array}{lll}+1 & \text { for } & z \geq 0 \\ -1 & \text { for } & z<0\end{array}\right.$
DLS computes a, b, c (or $a^{\prime}, b^{\prime}, c^{\prime}$) and initializes the algorithm. The algorithm allows very fast computation, and when DLN is called, it returns the next point of the digitized line in $22 \mu \mathrm{sec}$.

SIZE : 1708_{8} locations
4.6.2 OBLIQUE SCAN

CODE : OBL
PURPOSE : "Scans" an oblique rectangular area of a picture
in core, and stores the rectangle in standard form. The "scan" lines are at the oblique angle of the rectangle.

DISCUSSION: In successive frames, a vehicle may be oriented at different angles in the picture due to its following along the curvature of the road, due
to its lane-changing, entering, and exiting maneuvers, and due to camera movement. To make valid pictorial comparisons of vehicles in different frames, it is necessary to normalize the position of the vehicle. This can be done by scanning the vehicle in each frame using scan lines which are perpendicular to the vehicle's direction of motion in that frame. The scanned points are stored in a standardized format independent of the oblique angle at which they were scanned. The vehicle's images in different frames can then be compared.

The above process introduces comparison inaccuracies due to the digitization. For example, if the scan lines are at 45° angle, the distance between available points is $\sqrt{2}$ units. Thus the nth point on a scan line corresponds to a position on the vehicle which is $n \sqrt{2}$, units from the first point of that scan line. For a 0° vehicle image, the nth point corresponds to a position n units from the first point of the scan line.

Thus, in matching a 0° vehicle image against a 45° vehicle image, there will be inherent inaccuracies, since rather than matching points that correspond to the same vehicle-surface point, we will be matching points which correspond to vehicle-surface points $n \sqrt{2}-n$ units apart.

This kind of inaccuracy can be reduced by interpolation, if necessary. However, a study of the errors inherent in matching vehicles scanned at different oblique angles revealed that interpolation may not be necessary for the data considered in this problem. Design standards for highway curvature vs. design speed shows that the angle through which a vehicle following the highway curvature could turn in one second is less than 7°, and that the large factors of safety used make it this maximum very rarely encountered in practice.

The following test was made: A vehicle 21 points by 11 points was assumed to be oriented at angles $0^{\circ}, 5^{\circ}, 10^{\circ}, 15^{\circ}$, and 20°. At each orientation angle the vehicle was scanned, using as scanlines the oblique line approximations. The actual vehicle points hit were recorded. These are compared in Figures 21 to 25, for orienta-
tion angle differences of 5° and 10°. Five different scan rows are shown for each orientation. The distances between corresponding points is shown in the Figures to be no more than two units (where a unit distance is the distance between two successive scan points), when one of the upper corner points of the vehicle-images were superimposed. In practice, this is a worst-case condition, as the vehicle images will usually be centered with respect to each other. Thus, if we use the points on scan-row 10, we see that the distance between vehicle-image points for vehicle images separated by 5° is never more than one unit.

Figure 2l. A 0° Vehicle vs. a 5° Vehicle

Figure 22. A 5° Vehicle vs. a 10° Vehicle

Figure 23. A 10° Vehicle vs. a 15° Vehicle

Figure 24. A 0° Vehicle vs. a 10° Vehicle

Figure 25. A 10° Vehicle vs. a 20° Vehicle

CALL OBL,XC,YC,DXTP,DYTP,NROW,NCOL,RECT,PICT
where
$(X C, Y C)=$ That corner point of the oblique rectangle which will be stored as the first point of the scan, i.e. the upper left point if the rectangle was along the coordinate axes.
DYTP/DXTP = The directioned slope, starting from (XC, YC), of the "top" of the rectangle (i.e. the first scan line). The signs of DXTP, DYTP give the quadrant. XC, YC, DXTP, DYTP are expressed in the stored pictures coordinates.

NROW $=$ The number of rows to be scanned.
NCOL $=$ The number of columns to be scanned.
RECT $=$ Is the first location of the array where the rectangle will be stored.
PICT $=$ Is the first location of the stored picture.
EXAMPLE : For the picture matrix:

a	b	C	d	e	f	9
h	i	j	k	1	m	n
\bigcirc	p	q	r	s	t	u
v	w	X	Y	z	A	B
C	D	E	F	G	H	I
J	K	L	M	N	0	P
Q	R	S	T	U	V	W

if OBL is called with parameters
XC, YC, $=1,2$ (i.e. point "D")
DYTP/DXTP $=+3 /+1$
NROW $=4$
NCOL $=4$
the following scan pattern will be followed

and the rectangle stored will be:

METHOD : OBL uses two DLN's. One finds a line from (XC, YC) perpendicular to the slope of the rectangle, and thus finds the rectangle's "left" sideline. Each point in this line is used as an initial point for the scan lines which are produced by the second DLN.

CALLS

:
DLS, DLN: Draw-line
D2S, D2N: A second copy of Draw-line
SIZE : 2028 locations

4.7 CONTOUR TRACE AND PROPERTY DETERMINATION

CRL, CRD, and CRG are a package of programs for tracing the contour of an object in a picture. SZC can find properties of an object whose contour is known. $S Q R$ and $D S Q$ find squareroots for SZC and other routines.
4.7.1 CONTOUR TRACE (RIGHT)

CODE : CRL, CRD, CRG
PURPOSE : CRG performs a contour trace on a stored picture
along a light-dark contour, keeping the light area (set up by CRL) or the dark area (set up by CRD) on the right.

DISCUSSION: The contour trace program will find a series of border points between a light region and a dark region ("light" and "dark" being determined by a selected threshold value). This will be used to find the boundary of a vehicle and thus pick out the vehicle from its background. In addition, from the set of contour points of a vehicle several important vehicle properties can be found. These include vehicle position, size, shape, and orientation. Another important use of the contour trace is in finding road-edges.

CALLED BY :
CALL CRL,XO,YO,THSH,PICT
or
CALL CRD,XO,YO,THSH,PICT
WHERE
$(\mathrm{XO}, \mathrm{YO})=$ the initial point
THSH = the threshold
PICT is the first location of the stored picture and $\overline{\text { CALL CRG }}$ returning

A-Register $=\mathrm{x}$ value of next contour point
B-Register $=y$ value of next contour point
METHOD : TO have a contour trace keeping the "light" area on the right, CRL is called once to set up the contour trace (i.e. to define the first point and the threshold) and then CRG is called repeatedly, returning the successive light contour points. To have a contour trace keeping the dark area on the right, CRD is called to set up the contour trace and then CRG is called repeatedly, returning the successive dark contour points.

One general algorithm for contour tracing of a light region in a dark background is:

1. Go clockwise in a dark region - go counterclockwise in a light region.
2. Output the light point at every lightdark transition.

This will produce a series of light points on the contour, as shown in the following figure for the continuous picture case:

In the case of a digitized picture, the algorithm becomes:

1. Go right (from the last direction of motion) when a dark point is hit go left (from the last direction of motion) when a light point is hit.
2. If hit three light (dark) points in a row, assume next point hit must be dark (light), and thus take a diagonal step.
3. Whenever there is a light-dark transition, output the light point (except if it has just been output). For diagonal steps output as if it two steps: one vertical and b one horizontal. An example of this is shown in the following figure:

The complete algorithm* is shown in Table 1. It was written in the form of a finite-state machine, with the state representing the immediate past history of the trace. Since this information does not have to be found each time (as it is inherent in the state), the routine is fast.

SIZE
: 10748 locations

[^1]TABLE 1. THE CONTOUR TRACING ALGORITHM

*For example, LL-U means have hit two light points in a row, and have just moved Up.
CODE : SZC

PURPOSE : Finds the length, width, center of mass, and center of extent of a vehicle from a stored picture.

DISCUSSION: These properties determine vehicle position and extent. In addition, they will be used as features for matching vehicles in successive frames.

CALLED BY :
CALL SZC,DELX,DELY,INX,INY,THSH,LOC
MDAC LNTH,WDTH,XCTR,XGRV,YGRV where

DELY/DELX = the directed slope of the center line of the vehicle (the signs of DELY and DELX specifying the quadrant).
(INX, INY) $=$ a point on the contour of the vehicle (in stored-picture coordinates).
THSH $=$ The threshold used to determine the contour. LOC is the address of the stored picture.

The following is returned:
LNTH = the extent of the vehicle in the direction along its center line.
WDTH $=$ the extent of the vehicle in the direction perpendicular to its center line.
(XCTR, YCTR) $=$ the center point of the vehicle, based on extent (i.e. the center of a rectangle along the vehicle center-line which circumscribes the vehicle:
(XGRV, YGRV) $=$ the center of gravity of the vehicle based on its contour.

METHOD : SZC calls CRL and CRG which will find the contour points of the vehicle. Then SZC computers the projection, V, of each contour point on the center line of the vehicle, and the projection, U, of each contour point on an axis perpendicular to the center line. The following equations are used (Figure 26):

Figure 26. Projections of a Point onto the Vehicle Axes, U and V
$u=x \sin \theta-y \cos \theta=(x \Delta y-y \Delta x) / Q$
$v=x \cos \theta+y \sin \theta=(x \Delta x+y \Delta y) / Q$
where $\theta=$ the angle between the Y axis and the center-line of the vehicle
and $\Delta Y / \Delta X=$ the slope of the vehicle center-line and $Q=\left(\Delta X^{2}+\Delta Y^{2}\right)^{1 / 2}$

Then, the length and width of the vehicle are found by:

LNTH= Vmax - Vmin
WDTH= Umax - Umin
The center of extent (i.e. the point midway between Vmax and Vmin and midway between Umax and Umin) is found by:

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{C}}=\frac{1}{2}(V \max +\mathrm{Vmin}) \\
& \mathrm{U}_{\mathrm{C}}=\frac{1}{2}(U \max +U \min) \\
& \mathrm{X}_{\mathrm{C}}=\mathrm{V}_{\mathrm{C}} \cos \theta+\mathrm{U}_{\mathrm{C}} \sin \theta=\left(\mathrm{V}_{\mathrm{C}} \Delta \mathrm{X}+\mathrm{U}_{\mathrm{C}} \Delta \mathrm{Y}\right) / Q \\
& \mathrm{Y}_{\mathrm{C}}=\mathrm{V}_{\mathrm{C}} \sin \theta-\mathrm{U}_{\mathrm{C}} \cos \theta=\left(\mathrm{V}_{\mathrm{C}} \Delta \mathrm{Y}-\mathrm{U}_{\mathrm{C}} \Delta \mathrm{X}\right) / Q
\end{aligned}
$$

The center of gravity is found by

$$
\begin{array}{ll}
\mathrm{X}_{\mathrm{G}}=\frac{1}{2} & \sum_{1}^{\mathrm{N}} \mathrm{X} \\
\mathrm{Y}_{\mathrm{G}}=\frac{1}{2} & \sum_{1}^{\mathrm{N}} \mathrm{Y}
\end{array}
$$

where
$\mathrm{N}=$ the number of contour points
CALLS : CRL, CRG: Contour Trace
SQR: Square Root
SIZE : 3278 locations
4.7.3 SQUARE ROOT, DOUBLE PRECISION SQUARE ROOT

CODE : SQR, DSQ
NAME : SQUARE ROOT, DOUBLE PRECISION SQUARE ROOT
PURPOSE : Finds the square root of a given number.
DISCUSSION: The square root function, either is single or double precision, is used by several routines (e.g. SZC).

CALLED BY :
CALL SQR
where
A-Register $=N$, the number whose square root will be found returning.
A-Register $=$ Square root (N), for $\mathrm{N}>0$. A-Register $=0$, otherwise.
and
$\overline{C A L L}$ DSQ
where
A, B Registers $=\mathrm{N}$, in double precision. returinng

A-Register $=$ Square root (N), for $\mathrm{N}>0$.
A-Register $=0$, otherwise.
METHOD : The following algorithm is used:

$$
\mathrm{A}_{I}=2 \mathrm{P} / 2
$$

where $2^{P}=$ highest power of 2 less than N.

$$
A_{k+1}=\frac{1}{2}\left(N / A_{k}+A_{k}\right)
$$

Four iterations will suffice. Rounding takes place such that:

$$
A(A+l) \leq N
$$

SIZE
: SQR 608 locations
DSQ 104_{8} location

5.0 MACROS AND THE MACRO PROCESSOR

The programming of the routines described above is significantly aided by the use of macro-instructions (macros). In this section, we shall discuss the macro-processor and then give a brief description of each of the macros used.

5.I THE MACRO PROCESSOR

The purpose of the macro-processing program is to convert source language statements that are written in a form convenient for the programmer into statements or sequences of statements to achieve the desired end that are in the form of DAP assembly language and can thence be converted into machine code by the standard assembler. In effect, it allows the standard assembly language to be expanded by the inclusion of special statements suitable for the class of programs to be written.

For example, we have found it convenient to implement a special mnemonic instruction to read the TRIM analog to digital converter. The mnemonic is

RADC (for Read Analog to Digital Converter).
The macro-processor converts a source statement of the form
NAME RADC COMMENT
to the two lines of assembly language code
NAME INA $\left.\begin{array}{c}\text { '1070 COMMENT } \\ \text { JMP }\end{array}\right]=1$

The advantage to the programmer of having the menemonic is clear: it is more concise than the equivalent assembly language statements, and more easily remembered. It frees the programmer of having to remember the numerical (octal) device and function code 1070.

The macro-definition that causes the macro-processing program to carry out the translation illustrated is the following:
[@@@ RADC \&

$$
\% 00 \% 01 \% 02 \% 03 \text { INA '1070 \& }
$$

JMP *-l
]
The significance of the various symbols of this macrodefinition to the program is the following:

The symbol [marks the beginning of the macro-definition, and the symbol] the end.

The first line of the macro-definition is in essence a template against which each candidate line of source text is to be matched to determine whether it should be converted to the text of the subsequent lines.
\& is a "rest" symbol, and will match any continuation of the source line.

Each @ will match any character in the corresponding location of the given source line.

If the remainder of the given line of text matches the template exactly (in the present instance, if the 5th through the loth characters of the given line are " RADC "), then the macro-processing program will substitute for the source line the second line (if there is one) and all subsequent lines of the macro-definition (except the final]).

In the process, whatever string of characters was taken to match the \& of the template will be inserted for any \& that may appear in the subsequent line of the macro-definition.

Whatever character matched the lst @ of the template will be inserted in place of $\% 01$, etc.

The program operates on a source file of text, containing both the macro-definitions and the text which may be converted. It produces another file of text from which the macrodefinitions have been deleted and in which the macro-instructions have been appropriately converted.

The program operates as follows:
The source text is read one line at a time. If the line read starts with [, then it and subsequent lines are placed in a table of macro-definitions until the end macro symbol] is read.

Any other input line is compared against all the templates of the macro-definitions in turn. If it matches none, the line is added to the output file. If the line is found to match a template, then it is converted as described above and placed into a stack - a pushdown storage table whose unit entry is one line of text.

The program then reads and processes the stack instead of the source file until the stack is empty. If the current top line of the stack does not match any macro-definition template, it is removed from the stack and placed on the bottom of the output file. If it does match, it is converted and the converted form is placed on top of the stack in its place. The program returns to reading from the source file only after the stack has been emptied.

The following two properties of this manner of operation should be noted: (1) A source statement translated by one macro may result in one or more statements that themselves are further translated by other macros or even by the same one. (2) Each statement that is a candidate for translation is compared with all the macro-definitions preceding it in the source text in the order in which they occur. This allows macros to be used in combinations.

The implications of these properties are illustrated by the pair of macros that transform one line of text of arbitrary length and of the form

NAME >MOCT<12345,2345,...,670
into the set of data-defining assembly-language statements

NAME	OCT
OCT	23345
\cdot	
\cdot	
OCT	670

The macro definition that effects this translation are these:
[@@@@ >MOCT<

```
%00%01%02%03 OCT %04%05%06%07%08
    >MOCT<&
]
[@@@@>MOCT<&
%00%01%02%03 OCT &
]
Assume that the source text contains a line
NAME >MOCT < 123 , 456 ,70
Then this will match the template of the first macro-definition and will be converted to
NAME OCT 123
```

$>$ MOCT<456,70
which will be placed in the stack. Note that it would also have matched the template of the second macro-definition; but this comparison would not be performed. The first line now in the stack matches neither macro, and is therefore placed at the bottom of the output file. The second line again matches the first macro, and is converted to

OCT 456
$>$ MOCT <70
in the stack.
The first line is again transferred to the output file. The second now does not match the template of the first macrodefinition (there is no comma), but does match the second and is converted to

ОСТ 70
which is ultimately placed at the bottom of the output file.

5.2 MACROS DEVELOPED

The following are the macros that have been developed thus far.
5.2.1 5ARGA

The set of macros invoked by
5ARGA
serve to transform source statement sequences of fields of varying lengths into sequences of fields of a fixed format. Generally, other macros are then invoked to produce the final assembly language text. These can be much simpler if they can operate on statements of a fixed format rather than operating on statements in any of a number of formats.

The 5ARGA formatting macros transform statements of the form
NAME XXXXXXX5ARGA(sequence of varying fields)\#
into statements of the form
NAME_XXXXXX(sequence of fixed fields)
The source sequence of varying fields may contain an arbitrary number of fields of the form
$\mathrm{A}, \mathrm{A}^{*}, \mathrm{BB}, \mathrm{BB} *, \mathrm{CCC}, \mathrm{CCC} *, D D D D, D D D D^{, E}$
which will be converted into the fixed format sequence
A ,A *,BB ,BB *,CCC ,CCC *,DDDD ,DDDD*,E
The delimiters between the fields may be either commas as shown or left parenthesis.

The first four macro-definitions of the set insert the special symbol Λ before each field delimiter (i.e. command and left parenthesis), and insert Λ followed by a blank before the end symbol \#.

The operation of the macros may be understood by considering the line resulting from successive applications of the macros to the input line

NAME UVWXYZ5ARGAAB,C*\#
By the fourth macro this becomes first
NAME UVWXYZ5ARGAB,C*\#A
and then
NAME UVWXYZ5ARGA,C*\#AB
then by the second macro
NAME UVWXYZ5ARGAC*\#AB Λ,
then again by the fourth macro
NAME UVWXYZ 5ARGA*\#AB Λ, C
and
NAME UVWXYZ 5ARGA\#AB Λ, C*
Finally, by the first macro
NAME UVWXYZ>5ARGA<AB $\Lambda, C *$ \#\#
Had the delimiter (been present, the third macro would have performed the function analogous to that of the second.

It may be noted that further field delimiters may be simply established by adding macros with the appropriate characters replacing the commas in the second macro above. The symbol Λ preceding the delimiters identifies them as such for the subsequent macros.

The set of nine macros
>5ARG<
expand the fields to the proper length. A separate macro is provided for expanding each field of $1,2,3$, or 4 characters with and without a star.

Continuing the example
NAME UVWXYZ > 5ARGA <AB Λ, C^{*} ^\#
becomes
NAME UVWXYZ>5ARGA<C* $\Lambda \# A B$
by virtue of macro 8 , then
NAME UVWXYZ > 5ARGA < \# AB , C *
by macro 7, and finally,
NAME UVWXYZAB ,C *
by macro 5 .

The relevant macros definitions are

1）（eee＠eอe＠ее5ARGAねを \％00\％01\％02\％03 \％04\％05\％06\％07\％08\％09＞5ARG＜E．\＃ ］
2）โ Сеஉе உஉеஉеஉ5ARGA， \％00\％01\％02\％03 \％04\％05\％06\％07\％08\％095ARGAEの， J
 \％00\％01\％02\％03 \％04\％05\％06\％07\％08\％095ARGAE， J

\％00\％01\％02\％03 \％04\％05\％06\％07\％08\％095ARGAE\％10 ］
 \％00\％ $01 \% 02 \% 03 \% 04 \% 05 \% 06 \% 07 \% 08 \% 09 \varepsilon$ J
6）［еஉеஉ உஉеееஉ＞5ARG＜＠ーеを \％00\％01\％02\％03 \％04\％05\％06\％07\％08\％09＞5ARG＜\＆\％10 $\% 11$ ］
 $\% 00 \% 01 \% 02 \% 03 \% 04 \% 05 \% 06 \% 07 \% 08 \% 09>5 A R G<\varepsilon \% 10 \quad * \% 11$ ］
 $\% 00 \% 01 \% 02 \% 03 \% 04 \% 05 \% 06 \% 07 \% 08 \% 09>5$ ARG＜E\％ $10 \% 11 \quad \% 12$ J
9）โееее еஉе仓е＠＞5ARG＜e＠＊＿อを \％00\％01\％02\％03 \％04\％05\％06\％07\％08\％09＞5ARG＜E\％10\％11＊\％12」
 $\% 00 \% 01 \% 02 \% 03 \% 04 \% 05 \% 06 \% 07 \% 08 \% 09>5$ ARG $<6 \% 10 \% 11 \% 12 \% 13$ J
 $\% 00 \% 01 \% 02 \% 03 \% 04 \% 05 \% 06 \% 07 \% 08 \% 09>5$ ARG $<8 \% 10 \% 11 \% 12 * \% 13$ ］

\％00\％01\％02\％03 \％04\％05\％06\％07\％08\％09＞5ARG＜E\％10\％11\％12\％13\％14 J

$\% 00 \% 01 \% 02 \% 03 \% 04 \% 05 \% 06 \% 07 \% 08 \% 09>5$ ARGくを\％10\％11\％12\％13\％14\％15 J

5.2.2 INTERACTIVE MACROS

The following macros provide for interactive operation of the system. The first reads operator input from the graphics tablet. The others allow interactive operations via the teletype.

5.2.2.1 Tablet

This macro generates a routine to read the coordinates of the stylus on the graphics tablet and skip the instruction immediately following if the stylus is depressed. A source statement of the form

NAME TABLET X,Y
is transformed to

NAME INA	'1151	READ TABLET X
JMP	$*-1$	
LLR	3	
ARS	2	
STA	X	TABLET X
INA	1251	READ TABLET Y
JMP	$*-1$	
LLR	3	
ARS	2	
STA	Y	
IAB		
STA	$*+2$	
SKP		
BSS	1	
ANA	$=133$	
SZE		
JMP	$*-16$	TABLET ERROR
LDA	$*-4$	
ANA	$=144$	
SZE		

and a source statement of the form
NAME TABLET XAT*, YAT*
is transformed to
NAME INA 'll51 READ TABLET X
JMP *-1
LLR 3
ARS 2
STA* XAT TABLET X
INA 'l251 READ TABLET Y
JMP *-1

LLR 3
ARS 2
STA* YAT TABLET Y
IAB
STA *+2
SKP
BSS 1
ANA ='33
SZE
JMP *-16 TABLET ERROR
LDA *-4
ANA $=144$
SZE SKIP ON STYLUS DOWN
The relevant macro definitions are

```
[@@@@ TABLET &
%00%01%02%03 >TAB< 5ARGAE#
J
[@@@@ >TAB< @@@@@,@@@@@&
%00%01%02%03 INA '1151 READ TABLET X
    JMP *-1
    LLR 3
    ARS 2
    STA%08 %04%05%06%07 TABLET X
    INA •1251 READ TABLET Y
    JMP *-1
    LLR 3
    ARS 2
    STA%13 %09%10%11%12 TABLET Y
    IAB
    STA *+2
    SKP
    BSS 1
    ANA =.33
    SZE
    JMP *-16 TAGLET ERROR
    LDA *-4
    ANA = = 44
    SZE SKIP ON STYLUS DOWN
```


5.2.2.2 Request And Requester

This set of macros provides for teletype output of messages requesting values for variables and for accepting values typed by the operator.

The source statement

REQUESTER

is transformed into the subroutine $>$ RR<. Statements of the form

NAME REQUEST AB,CDE*
result in calls to subroutine $>R R<$ of the form
*REQUEST AND READ AB
NAME JST* *+4
BCI 3,AB
DAC $>$ RR<
STA AB
REQUEST AND READ CDE
JST* *+4
BCI 3,CDE*
DAC $>\mathrm{RR}<$
STA* CDE
Subroutine $>$ RR< types the name of the variable requested followed by an equals sign. It then awaits input from the operator. It will accept, properly interpret, and store variable values typed in either as decimal numbers or as octal numbers. In keeping with the conventions of the DAP assembly language, octal numbers must be identified as such by a preceding apostrophe. The significance of a star following a variable name in a source statement (and subsequently the typed request) is that the named location contains the machine address in which the new value is to be stored.

```
The relevant macro definitions are
    Isgen REQUEST &
    #00%01%02%03 >ROST<5ARGAE $
]
|ROलA >RQST<
J
```



```
* REOUEST AND READ %04%05%06%07%08
%00%01%02%03 JST* <RR>
    BCI 3,%04%05%06%07%08
    STA%OB %04%05%06%07
    >ROST<&
```

```
J
{REQUESTER
* parameter request and read routine
    BCI 1,=
    OCT '177531 ='
>RR< DAC
    LDA =.212
    JST* •145
    LDA >RR<
    STA *+5
    ADD =4
    STA >RR<
    JST* '152
    DEC -3
    DAC **
    JST* 'l52
    DEC -1
    DAC >RR<-2
    JST* '147
    SNZ
    SKP
    JMP* >RR<
    IAB
    CAS >RR<-1
    SKP
    JMP *+3
    CRA
    SKP
    JST* '146
    JMP* >RR<
    FIN
]
```

5.2.2.3 Macros to Invoke Teletype Routines

The following set of macros generate assembly language statement that include jumps to system teletype routines:

NAME SPACE
is converted to
NAME LDA $=1240$
JST* '145

This results in a space being typed by the teletype,
NAME RETC
is converted to
NAME LDA $=$ ' 212
JST* '145
This results in a teletype carriage return.
NAME QMARK
is converted to
NAME LDA $=$ ' 277 QUEST MK
JST* '145
which results in a question mark being typed by the teletype.
NAME WOCT A
is converted to
NAME LDA $=$ ' 247
JST* 'l45 TYPE '
LDA A
JST '153 TYPE OCTAL
and
NAME WOCT* A
to NAME LDA = '247
JST* 'l45 TYPE '
LDA* A
JST* 'l53 TYPE OCTAL
This code results in the contents of the symbolic location A (WOCT) or the contents of the location whose address is in location A (WOCT*) being typed as an octal number preceded by an apostrophe.

Similarly, the source statements
ONE WDEC A
TWO WDEC* B
are converted to
ONE LDA A
JST* '154 TYPE DECIMAL
TWO LDA* B
JST* '154 TYPE DECIMAL
which types the contents of the respective locations as decimal numbers．

Finally，a source statement of the form
NAME TYPE TELETYPE MESSAGE
is transformed to

```
*TYPE 'TELETYPE MESSAGE'
NAME JST* 'l52
            DEC -09
            DAC *+2
            JMP *+1+09
            BCI 09,TELETYPE MESSAGE
```

which results in the text
TELETYPE MESSAGE
being typed by the teletype.

```
{E@e@ SPACE
%00%01%02%03 LDA = '240
        JST* •145
J
[@@巳@ RETC
%00%01%02%03 LDA ='212
        JST* •145
J
l Ce巳巳 QMARK
%00%01%02%03 LDA = '277 QUEST MK
    JST* '145
[@\odot®® TYPE &
* TYPE '&'
%00%01%02%0301234567890123>TYP<E -
J
```



```
%00%01%02%03%04123456789%14123>TYP< _&
J
```



```
%00%01%02%03 JST* '152
        DEC -%14%04
        DAC *+2
        JMP *+1+%14%04
        BCI %14%04,&
```

J
［ ©ee＠9012345678eeee＞TYP＜e＠を
\％00\％ $01 \% 02 \% 030123456789 \% 05 \% 06 \% 07 \% 04>$ TYP $<8 \% 08 \% 09$
J

\％00\％01\％02\％03\％05\％06\％07\％08\％09\％ $10 \% 11 \% 12 \% 13 \% 04 \% 14 \% 15 \% 16 \% 17>$ TYP $<$ E $18 \% 19$
］
［ е＠＠® TOP
\％00\％01\％02\％03 JMP＊ 156 RETURN TO TOP
」
［＠＠＠อ WOCT＠\＆
$\% 00 \% 01 \% 02 \% 03$ LDA $=1247$
JST＊＇145 TYPE＇
LDA\％04 E
JST＊•153 TYPE OCTAL
J
I＠e®e WDECE \＆
\％00\％01\％02\％03 LDA\％04 \＆ JST＊＇154 TYPE DECIMAL
〕

5．2．3 MACROS FOR SUBROUTINE CALLS

The following macros facilitate the calling of subroutines． LINKS TO allows calling a subroutine from any sector，CALL calls a subroutine，FUNCTION transfers values to a subroutine， and EXIT exits a subroutine．

5．2．3．1 LINKS TO

This macro results in assembly language statements defining subroutine links．It assumes，consistent with the conventions we have adopted in our programming，that a subroutine name will consist of exactly three characters，and that the symbolic addresses of the links are those three letters followed by the equals sign．

The source statements of the form
LINKS TO ABC，DEF，．．．XYZ
are transferred to
＊SUBROUTINE LINKS
ORG＇400
$\mathrm{ABC}=\mathrm{DAC} \quad \mathrm{ABC}$
$D E F=D A C$ DEF
$X Y Z=$ DAC $\quad X Y Z$
TEMP BSS 1
TEMP defines a temporary storage location common for a number of subroutines. The relevant macro-definitions are:

```
[LINKS TO &
* SUBROUTINE LINKS
    ORG '400
>LNKS<&
]
[>LNKS<@@@
%00%01%02= DAC %00%01%02
TEMP BSS l
]
[>LNKS<@@@,&
%00%01%02= DAC %00%01%02
>LNKS<&
]
```

5.2.3.2 CALL

This set of macros generates a subroutine calling sequence. The overall effect is to transform a source statement of the form

NAME CALL SUB,ABC,D*,17
into the assembly language sequence

* CALL SUBROUTINE SUB

NAME JST SUB
DAC ABC
DAC* D
DAC 17
or a source statement of the form
CALI SUB=*, A,B
into

* CALL SUBROUTINE SUB

JST* SUB=
DAC A
DAC B
The relevent macro definitions are
[@@@@ CALL \&
\%00\%01\%02\%03 >CAL< 5ARGA\&\#
]

```
[@@@@ >CAL< @@@@ @&
* CALI SUBROUTINE %04%05%06%07
%00%01%02%03 JST %04%05%06%07
    >DAC< &
]
[@@@@ >DAC<
]
[@@@@ >DAC< @@@@@@&
%00%01%02%03 DAC%08 %04%05%06%07
    >DAC}< &
]
```


5.2.3.3 FUNCTION

This set of macros defines storage locations within a subroutine and transfers the calling parameters to the storage locations so defined.

A source statement of the form
SUBR FUNCTION A,BC,DEF
results in

A	BSS	1
BC	BSS	1
DEF	BSS	1
SUBR	DAC*	**
	LDA*	SUBR
	STA	A
	IRS	SUBR
	LDA*	SUBR
	STA	BC
	IRS	SUBR
	LDA*	SUBR
	STA	DEF
	IRS	SUBR

When executed, the resulting program segment transfers the values of the calling parameters in the subroutine calling sequence to their assigned storage locations within the subroutine.

The relevant macro-definitions are

```
I Eeee FUNCTION &
%00%01%02%03 >XFA< 5ARGA&*
]
```

```
| @巳@巳 >XFA< &
    >DEF< &
%00%01%02%03 DAC* **
%00%01%02%03 >XFB< & %
]
{@@@@ > XFB< *
J
\@\varrho\varrho@ >XFB< @\varrho\varrho@ €&
    LDA* %00%01%02%03
    STA %04%05%06%07
    IRS %00%01%02%03
%00%01%02%03 >XFB< &
J
```


5.2.3.4 EXIT

This macro will provide an exit for a subroutine which gets its calling parameters using the macro FUNCTION. EXIT will store the return address (without an indirect flag) in a temporary location, and then jump to the return address.

A source statement of the form
NAME EXIT SUBR
will become

```
NAME LDA SUBR
    ANA = '37777
    STA TEMP
    JMP* TEMP
    FIN
```

The relevant macro definition is
[@@@@ EXIT @@@@\&
$\% 00 \% 01 \% 02 \% 03$ LDA \%04\%05\%06\%07 \&
ANA $=137777$
STA TEMP
JMP* TEMP
FIN
]
5.2.4 DISK FILE HANDLING MACROS

The following macros are provided for calling the system subroutines to open close, read and write disk files:

A source statement of the form
NAME OPEN N,NAME
where $N=1-4$ and NAME is the storage location of the 6character file name is transformed to

* OPEN FILE FOR READING AND WRITING

NAME JST* '162 DEC 3 DAC NAME LOC OF FILE NAME DEC N UNIT NUMBER

A source statement of the form
NAME CLOSE N
is transformed to

* CLOSE UNIT N

NAME JST* 'l62
DEC 4
BSS 1 DEC N
and the statement
NAME CLOSE ALL
is transformed to

* CLOSE ALL FILES

LDA $=-4$
STA *+5
LDA $=1$
STA *+4

* CLOSE UNIT *

JST* '162
DEC 4
BSS 1
DEC *
IRS *-1
IRS *-3
JMP *-6

The following two statements result in reading a fixed number of words from the file associated with a given unit into the successive core location beginning at LOC, or of writing a fixed number of consecutive words commencing at LOC into the file associated with the given unit.

The source statement
NAME FETCH 1,LOC,17
is transformed to

* READ FROM DISK

NAME JST* '160
DEC 1 UNIT
DAC LOC CORE LOC
DEC 17 NR OF WORDS
and a statement of the form
NAME STORE 1,LOC,17
is transformed to

* WRITE ON DISK

NAME JST* '161
DEC 1 UNIT
DAC LOC CORE LOC
DEC 17 NR OF WORDS
The following two macros serve to read into core or store on disk pictures stored in standard format

NAME FILE PICTURE $1, P I C T$
is transformed to

* FILE ON DISK PICTURE PICT

NAME LDA* *+9
MPY* *+5
IAB PRODUCT TO A
ADD $=2$
STA *+6
SKP
DAC 1+PICT

* WRITE ON DISK

JST* '161
DEC 1 UNIT
DAC PICT CORE LOC
DEC $0 \quad$ NR OF WORDS
and a statement of the form
NAME RECALL 1,PICT
is transformed to

* RECALL FROM DISK PICTURE PICT
* READ FROM DISK

NAME JST* '160
DEC 1 UNIT
DAC PICT CORE LOC
DEC 2 NR OF WORDS
*COMPUTE PICTURE SIZE
LDX *+9
LDA 0,1
IRS 0
MPY 0,1
IAB PRODUCT TO A

* READ FROM DISK

JST* '160
DEC 1 UNIT
DAC * CORE LOC
DEC $0 \quad$ NR OF WORDS
The last two macros of this set serve to set up code to skip over a portion of an open file.

A source statement of the form
NAME SKIP 1,17
is transformed to

* SKIP (17) WORDS ON DISK UNIT 1

NAME LDA 17
TCA
STA *+8

* READ FROM DISK

JST* •160
DEC 1 UNIT
DAC *+6 CORE LOC
DEC $1 \quad$ NR OF WORDS
IRS *+3
JMP *-5
JMP *+3
BSS 2

```
    and a source statement of the form
    NAME SKIP PICTURE 2
is transformed to
    * SKIP OVER PICTURE ON DISK UNIT 2
    * READ FROM DISK
    NAME JST* '160
        DEC 2 UNIT
        DAC *+17 CORE LOC
        DEC 2 NR OF WORDS
        LDA *+15
        TCA
        STA *+13
        LDA *+13
        TCA
        STA *+13
* READ FROM DISK
        JST '160
        DEC 2 UNIT
        DAC *+10 CORE LOC
        DEC 1 NR OF WORDS
        IRS *+7
        JMP *-5
        IRS *+3
        JMP *-10
        JMP *+5
    BSS 4
The relevent macro definitions are:
    [@@С` OPEN @,&
    * OPEN FILE FOR READING AND WRITING
    %00%01%02%03 JST* '162
        DEC 3
        DAC & LOC OF FILE NAME
        DEC %04 UNIT NUMBER
    ]
    l@饣е饣 CLOSE @
    * CLOSE UNIT %04
    %00%01%02%03 JST* '162
            DEC 4
            BSS 1
            DEC %04
    J
```

```
    {@@@@ FETCH @,\dot{\varepsilon}
    * READ FROM DISK
    %00%01%02%03 JST* '160
        DEC %04 UNIT
        >RWD< 5ARGA&*
    ]
    [@®®® STORE @,&
    * WRITE ON DISK
    %00%01%02%03 JST* 1161
        DEC %04 UNIT
        >RWD< 5ARGAE*
    J
    | >RWD< eee@ ,&
        DAC %00%01%02%03 CORE LOC
        DEC &NR OF WORDS
    J
    !@@@@ FILE PICTURE @,&
    * FILE ON DISK PICTURE &
    %00%01%02%03 LDA* *+9
        MULT* **5
        ADD =2
        STA *+6
        SKP
        DAC 1+&
        STORE %04,&,O
    1
    |@@\varrho@ RECALL @,&
    * RECALL FROM DISK PICTURE &
    %00%01%02%03 FETCH %04,&,2
    * COMPUTE PICTURE SIZE
        LDX *+9
        LDA 0,1
        IRS 0
        MULT 0,1
        IRS 0
        STA *+7
        STX *+5
        SKP
        DAC &
        FETCH %04,*,0
J
[@e@@ CLOSE ALL
* CLOSE all files
    LDA =-4
    STA *+5
    LDA =1
    STA *+4
    CLOSE *
    IRS *-1
```

```
    IRS *-3
    JMP *-6
]
[@@@\varrho SKIP PICTURE @
* SKIP OVER PICTURE ON DISK UNIT %04
%00%O1%02%03 FETCH %04,*+17,2
        LDA *+15
        TCA
        STA *+13
        LDA *+13
        TCA
        STA *+12
        FETCH %04**+10,1
        IRS *+7
        JMP *-5
        IRS **3
        JMP *-10
        JMP **5
        BSS 4
J
〔@e@@ SKIP eっ&
* SKIP (&) WORDS ON DISK UNIT %04
%00%01%02%03 LDA &
    TCA
        STA *+8
        FETCH %O4,*+6,1
        IRS *+3
        JMP *-5
        JMP *+3
        BSS 2
]
```


5.2.5 TRIM DEFLECTION SIGNAL MACROS

These translate mnemonics for the various output instructions to transmit signals to the TRIM scanner. In each case, the assembly language instructions generated will send the contents of the A-register and an appropriate function code to the scanner. The following are provided

```
leeee xs
*00%01%02%03 OTA -52 X, SHORT
    JMP *-1
J
[ eeee XM
%00%01%02%03 OTA '152 X, MEDIUM
        JMP *-1
J
```

```
    \ ®еஉе XL
    %00%01%02%03 OTA '252 X, LONG
        JMP *-1
    J
    [@eee XSG
    %00%01%02%03 OTA '352 X, SHORT, GO
        JMP *-1
    J
    {@e@e XMG
    %00%01%02%03 OTA *452 X, MEDIUM, GO
        JMP *-1
    J
    \eee巳 XLG
    %00%01%02%03 OTA }1552\times\mathrm{ X, LONG, GO
        JMP *-1
    1
    [ eeee Ys
    %00%01%02%03 OTA '652 Y, SHORT
        JMP *-1
    J
    Iееее YM
    %00%01%02%03 OTA '752 Y, MEDIUM
        JMP *-1
    J
    [ceee YL
    %00%01%02%03 OTA '1052 Y, LONG
        JMP *-1
    J
    {@\varrhoe巳 YSG
    %00%01%02%03 OTA 11152 Y, SHORT, GO
        JMP *-1
    J
    [@еее YMG
    %00%01%02%03 OTA '1252 Y,MEDIUM, GO
        JMP *-1
    ]
    leeee YLG
    %00%01%02%03 OTA •1352 Y, LONG.GO
    J
    leeee z
    %00%01%02%03 OTA •1452 Z
        JMP *-1
    J
    [eeee ZG
%00%01%02%03 OTA '1552 Z,GO
        JMP *-1
J
```


5.2.6 LOCATION DEFINING MACROS

The following macros define storage locations. DEFINE defines BSS locations. MOCT,MDEC, and MDAC define multiple OCT, DEC, and DAC locations.
5.2.6.1 DEFINE

The set of macros invoked by DEFINE serve to create a set of storage-defining assembly language statements.

A source statement of the form
DEFINE A, BCDE,FGH (2),I(89), J
ultimately results in

A	BSS	1
BCDE	BSS	1
FGH	BSS	2
I	BSS	89
J	BSS	1

The macros SQUASH) which appear at an intermediate stage serve to delete the right parenthesis and any superfluous spaces that would otherwise interfere with the proper operation of the set of macros 5ARGA.

```
The relevant macro definitions are
```

(DEFINE \&
SQUASH) \&\#
]
(SQUASH) \#E
$>D E F<5 A R G A \& *$
1
(SQUASH)) E
SQUASH) \&
J
(SQUASH) \&
SQUASH) E
J
(SQUASH) é
SQUASH) \&\%00
J
($>$ DEF< eeอe •\&
\%00\%01\%02\%03 BSS 1
$>D E F<\varepsilon$
1

```
l >DEF< eeee leee,e,&
%00%01%02%03 BSS %04%05%06%07%08
    >DEF< &
J
l >DEF< @@e@
%00%01%02%03 BSS 1
]
l >DEF< @е巳е (еஉещ@
%00%01%02%03 BSS %04%05%06%07%08
]
```

5.2.6.2 MOCT, MDEC

These macros result in assembly language statements that define constants.

Source statements of the form
NAME MOCT 1,22,777
become
NAME OCT 1
OCT 22
ОСТ 777
and source statements of the form
NAME MDEC 1,22,999
become

```
NAME DEC 1
    DEC 22
    DEC 999
```

The relevant macro - definitions are:

```
[@е®e MOCT &
%00%01%02%03 >MOCT<5ARGA&*
J
[@@@@ MDEC &
%00%01%02%03 >MDEC<5ARGA&*
J
[ceee >MOCT<eceee
%00%01%02%03 OCT %04%05%06%07%08
J
```

```
[@@@@ >MOCT<@@@@@,&
%00%01%02%03 OCT %04%05%06%07%08
    >MOCT<&
]
\@@@@ >MDEC<@@@@@
%00%O1%O2%03 DEC %04%05%06%07%08
J
[@@@@ >MDEC<@@@@@,&
%00%O1%02%03 DEC %04%05%06%07%08
        >MDEC<&
]
```

5.2.6.3. MDAC

MDAC will form a series of DAC's. A source statement of the form:

NAME MDAC X,YY*,ZZZZ
becomes
NAME DAC X
DAC* YY
DAC ZZZZ
The relevent macro definitions are:

```
{@@@@ MDAC &
%00%01%02%03 >MDAC<5ARGAE#
J
{@@@@ >MDAC<@@@@@
%00%01%02%03 DAC%08 %04%05%06%(
J
[@@@@ >MDAC<@@@@@,&
%00%01%02%03 DAC%08 %04%05%06%0
    >MDAC<\varepsilon
J
```


5.2.7 ARITHMETIC AND LOGICAL OPERATIONS

The following macros allow often-used arithmetic and logical operations to be called conveniently
5.2.7.1 DVDE, MULT

The machine instruction
DIV QUOT
has the effect of dividing the contents of the A and B registers considered as one double-precision number by QUOT

The macro
NAME DVDE QUOT
results in code
NAME CSA
IAB
CRA
SRC
CMA
SET UP DIVIDE

DIV
QUOT
which first takes the single-precision number in the A register and expands it into the form of a double precision number in the combined A and B registers and then performs the division.

The machine instruction to multiply

MPY FCTR

multiplies the contents in the A register by the number at location FCTR and leaves the product as a double precision number in the combined A and B registers.

A source statement of the form
NAME MULT FCTR
results in
NAME MPY FCTR
IAB
PRODUCT TO A

This has the effect of reducing the product to a singlerecision number in the A register.

The relevant macro definitions are

```
|@@@@ DVDE@ &
%00%01%02%03 CSA SET UP DIVIDE
    IAB :
    CRA :
    SRC :
    CMA :
    DIV%04 &
J
[@@@@ MULT@ &
%00%01%02%03 MPY%04 &
    IAE PRUDUCT TO A
J
```

5.2.7.2 ABS

This short macro finds the absolute value of the number in the A-Register.

The source statement
NAME ABS
becomes
NAME SPL TCA

The relevant macro definition is
[@@@@ ABS
$\% 00 \% 01 \% 02 \% 03$ SPL TCA
]

5.2.7.3 ORA

There is no machine instruction that performs the logical "inclusive or" operation. The macro ORA constructs code to leave in the accumulator the result of a logical inclusive OR of the two specified variables.

Source statement of the form
NAME ORA X, Y
NEXT ORA $\mathrm{V}^{*}, \mathrm{~W}^{*}$

```
are transformed to
\begin{tabular}{lllcl} 
NAME & LDA & X & INCLUSIVE OR \\
& ANA & W & \(\vdots\) & \\
& ERA & X & \(\vdots\) \\
NEXT & ERA & W & \(\vdots\) & \\
& ANA* & \(Y\) & Z & INCLUSIVE OR \\
& ERA* & Y & \(\vdots\) & \\
& ERA* & Z & \(\vdots\) &
\end{tabular}
The relevant macro definitions are
[@@@@ ORA &
%00%01%02%03 >ORA< 5ARGAE#
l
```



```
%00%01%02%03 LDA%08 %04805%06%07 INCLUSIVE OR
    ANA%13 %09%10%11%12
    ERA%08 %04%05%06%07
    ERA%13 %09%10%11%12
1
```


5.2.8 MISCELLANEOUS MACROS

The DELAY macro inserts a delay in the program. The MATCH macro tests two strings of text for a match. The SLASH macro allows easy input of programs by providing a facility for inserting tabs.

5.2.8.1 DELAY

This macro will put in a delay loop of any multiple of 20 macroseconds, if sense-switch 4 is up.

The source statement
NAME DELAY 50
becomes

* DELAY 20*50 MICROSECONDS IF SS4 IS UP

NAME SS4
JMP *+11

STA *+8
LDA *+8
AOA
LLR 32 SPL

JMP	$*-3$	
LDA	$*+2$	
JMP	$*+3$	
BSS	1	
DEC	-50	
$*$	$* * * * * *$	

The relevant macro definition is
[@@@@ DELAY \&

* DELAY 20*\& MICROSECONDS IF SS4 IS UP
\%00\%01\%02\%03 SS4
JMP *+11
STA *+8
LDA *+8
AOA
LLR 32
SPL
JMP *-3
LDA *+2
JMP *+3
BSS 1
DEC -\&
* * * * * * * *

]

5.2.8.2 MATCH

This macro generates a call to the subroutine MCH , which compares two strings of text. If they are equal, the subroutine return is to the location immediately following the call, if not, to the next subsequent location.

A source statement of the form
NAME MATCH 5,TEXT,SOMETHING
is converted to:
NAME JST* MCH= TEXT COMP. - SKP IF N.E.
DEC -5
DAC TEXT
BCI 5,SOMETHING
This results in the comparison of the string of characters "SOMETHING" with the characters stored in 5 consecutive words starting with location TEXT.

```
The relevant macro definitions are
\@@@@ MATCH @,@@@@@&
%OO%O1%O2%03 JST* MCH= TEXT COMP. - SKP IF N.E.
    DEC -%04
    >TRNK<5ARGA%05%06%07%08%09XXXXX*
    >TXT<%04%05%06%07%08%09&
]
{@@@@ >TRNK<@@@@@&
%00%01%02%03 DAC%08 %04%05%06%07
J
\@@@@ >TXT<Q,&
%00%01%02%03 BCI %04%&
l
[@@@@ >TXT<@@&
%00%01%02%03 >TXT<%O4&
]
```


5.2.8.3 SLASH

This macro facilitates the keying-in of a program on the teletype by providing tabs. The tabs are typed as slashes, and tab to columns 6,12, and 20. To allow the first entry to begin in column l, an initial two slashes are used. Thus, source statements of the form
/OPC/ADDR/COMMENT
//NAME/OPC*/ADD+1/COMMENT 2
//NAME/OPC
/OPC//COMMENT: $\mathrm{Z}=\mathrm{X} / \mathrm{Y}$
are transformed to

	OPC	ADDR	COMMENT
NAME	OPC*	ADD+1	COMMENT2
NAME	OPC		
	OPC		COMMENT $: Z=x / Y$

The pertinent macro definitions are

```
[//@/&
%00 ^&
]
[//@@/&
%00%01 - &
J
[//@@@/&
%00%01%02 _E
J
[//@@@@/&
%00%01%02%03~E
J
[/E
        ~E
]
[ &@@@_@/&
%00%01%02%03 %04 -&
J
| @@@@_@@/&
%00%01%02%03 %04%05 -&
J
[@@@@』@@@/&
%00%01%02%03 %04%05%0% -. 
1
[@@@@_@@@@/&
%00%01%02%03 %04%05%06%07 ~&
J
[@@@@_&
%00%01%02%03 &
]
[@@@@@@@@@(_/&
%00%01%02%03%04%05%06%07%08%09
]
[ @@@@@@@@@@_@/&
%00%01%02%03%04%05%06%07%08%09 %10
\varepsilon
J
[ @@@@@@@@@@_@@/&
%00%01%02%03%04%05%06%07%08%09 %10%11 &
J
[ @@@@@@@@@@_@@@/&
%00%01%02%03%04%05%06%07%08%09%10%11%12
\varepsilon
]
[ @@@@@@@@@@_อ@@@/&
%00%01%02%03%04%05%06%07%08%09%10%11%12%13 &
]
[@@@@@@@@@@_@@@@@/&
%00%01%02%03%04%05%06%07%08%09%10%11%12%13%14 &
]
```

［＠＠＠＠＠＠＠＠＠＠」＠＠＠＠＠＠／を
\％00\％ $01 \% 02 \% 03 \% 04 \% 05 \% 06 \% 07 \% 08 \% 09 \% 10 \% 11 \% 12 \% 13 \% 14 \% 15 \quad$ ध 1
［＠＠＠＠＠＠＠＠＠＠．＠＠＠＠＠＠＠／\＆
\％ $00 \% 01 \% 02 \% 03 \% 04 \% 05 \% 06 \% 07 \% 08 \% 09 \% 10 \% 11 \% 12 \% 13 \% 14 \% 15 \% 16$ \＆ 1
［＠＠＠＠＠＠＠＠＠＠＿
\％00\％01\％02\％03\％04\％05\％06\％07\％08\％09 \＆
〕

APPENDIX A

THE PROGRAMS

```
* DEMONSTRATION PROGRAM
*
*
*
*
* SUBROUTINE LINKS
            ORG !400
ILC= DAC ILC
CSS = DAC CSS
CSD= DAC CSD
DIS = DAC DIS
PMD= DAC PMD
PML= DAC PML
STO= DAC STO
OBL= DAC OBL
DLS= DAC DLS
DLN= DAC DLN
D2S = DAC D2S
D2N= DAC D2N
SOR= DAC SQR
SZC= DAC SZC
CRL= DAC CRL
CRD= DAC CRD
CFG= DAC CRG
AVG= DAC AVO
*
* STORAGE LOCATION LINKS
REC= DAC RECT
LOC= DAC LOC
*
*
*
*
*
TEMP BSS 50
*
*
*
***SFW
*
*
* STYLUS FOLLOWER AND INTERLACED SCAN
* ALTERNATES INTERLACED SCAN WITH CROSS AT
LOCATION OF STYLUS.
IF STYLUS IS UP, CROSS IS DISPLAYED BLINKING.
* CALLS CSS (CSD), AND ILC.
    ORG •1000
    STRT
* SET CROSS
JST CSS
DAC SFN
DAC SFDL
```

```
    DAC SFZ
    JMP BGN
    ROST NOP ENTRY FOR PARAMETER REQUESTS
    * Request display parameters
    * REquest and read ydis
        JST***4
        BCI 3,YDIS
        DAC >RR<
        STA YDIS
    * REquest and read xdis
        JST* *+4
        BCI 3,XDIS
        DAC >RR<
        STA XDIS
    * reouest and read ddis
        JST* *+4
        BCI 3,DDIS
        DAC >RR<
        STA DDIS
    * request scan parameters
    * REQUEST AND READ ytop
        JST* *+4
        BCI 3,YTOP
        DAC >RR<
        STA YTDP
        STA YTP2
    * request and read ybot
        JST* *+4
        BCI 3,YBOT
        DAC >RR<
        STA YBOT
        STA YBT2
    * REQUEST aND READ xLFT
        JST* *+4
        BCI 3,XLFT
        DAC >RR<
        STA XLFT
        STA XLT2
    * request and read xrgt
        JST* *+4
        BCI 3,XRGT
        DAC >RR<
        STA XRGT
        STA XRT2
    * request and read delt
        JST* *+4
        BCI 3,DELT
        DAC >RR<
        STA DELT
    * GET SCAN WIDTHS
        LDA YTOP
        SUB YBOT
        STA YWDH
        ARS 1
        STA YWD2
        LDA XRGT
        SUB XLFT
```

```
    STA XWDH
    ARS l
    STA. XWD2
    JMP CILC
    * RE-REQUEST ON SSl.
    BGN SSl
        SKP
    JMP RQST
    * DIGITIZE AND DISPLAY ON SS2
        SR2
        JMP DIGT
    *CALL ILC
        S53
        SKP
    JMP AILC
    SS4
    SKP
    JMP BILC
CILC JST ILC
    DAC YTOP
    DAC YBOT
    DAC XLFT
    DAC XRGT
    DAC DELT
    JMP RDTB
* BIG SCAN ON SS4
BILC JST ILC
    DAC YTP2
    DAC YBT2
    DAC XLT2
    DAC XRT2
    DAC DEL2
    JMP RDTB
* ALTERNATE LARGE AND SMALL SCAN ON SS3
AILC LDA ALT
    SZE
    JMP DSSM
    AOA
    STA ALT
    JST ILC
    DAC YTP2
    DAC YBT2
    DAC XLT2
    DAC XRT2
    DAC DEL2
    JMP RDTB
DSSM CRA
    STA ALT
    JMP CILC DISPLAY SMALL
    *REAd TABLET
    RDTB CRA
    STA UPDN UP-DOWN SWT TO O (=DWN)
    INA 'll51 TABLET X
    JMP *-1
    STA TABX
    INA •1251 TABLET Y
    JMP *-1
```

```
    STA TABY
    ANA TABX
    SPL STUP
        TEST STYLUS
    JMP STUP STYLUS UP
TTAB ALS 1 TEST TABLET
    SPL
    JMD BGN DATA NOT READY
    ALS 1
    SPL BMP BGN ERROR IN TABLET
    JMP CCSS CALL CROSS
STUP STA AND
    LDA =1
    STA UPDN UP-DOWN SWT TO l (=UP)
    LDA AND
    JMP TTAB
*CALL CROSS
CCSS LDA TABX
    ALS 1
    ANA =.3777
    STA TABX
    LDA TABY
    ALS l
    ANA =.3777
    STA TABY
    JST CSD
    DAC TABX
    DAC TABY
    LDA UPDN TEST SWITCH
    SZE
    JMP BGN
* mOVE SCAN ON STYLUS DOWN
    LDA TABX
    SUB XWD2
    STA XLFT
    SUB XWDH
    SUB XWDH
    STA XLT2
    LDA TABX
    ADD XWD2
    STA XRGT
    ADD XWDH
    ADD XWDH
    STA XRT2
    LDA TABY
    SUB YWD2
    STA YBOT
    SUB YWDH
    SUB YWDH
    STA YBT2
    LDA TABY
    ADD YWD2
    STA YTOP
    ADD YWDH
    ADD YWDH
    STA YTP2
    LDA DELT
```

```
MPY
=6
I AB
STA DEL2
JMP BGN
* CALL SUBROUTINE TO DIGITIZE, THEN TO DISPLAY
DIGT JST* STO=
    DAC YTOP
    DAC YBOT
    DAC XLFT
    DAC XRGT
    DAC DELT
    DAC LOC
    LDA =-7
    STA DGCT
DIG2 JST* AVG=
    DAC YTOP
    DAC YBOT
    DAC XLFT
    DAC XRGT
    DAC DELT
    DAC LOC
    IRS DGCT
    JMP DIG2
    JST* DIS=
    DAC YDIS
    DAC XDIS
    DAC DDIS
    DAC LOC
    JMP BGN
* PaRAMETER REQUEST AND READ ROUTinE
    BCI l,=
    OCT 1177531 ='
>RR< DAC **
    LDA ='212
    JST* 'l45
    LDA >RR<
    STA *+5
    ADD =4
    STA >RR<
    JST* '152
    DEC -3
    DAC **
    JST* '152
    DEC -1
    DAC >RR<-2
JST* !147
SNZ
SKP
JMP* >RR<
IAB
CAS >RR<-1
SKP
JMP *+3
CRA
SKP
JST* '146
```

JMP＊＞RR＜
FIN
SFN
OCT 67
SFDL OCT 1
SFZ OCT 3777
UPDN OCT O
TABX OCT 0
TABY OCT 0
AND OCT 0
YTOP OCT 2050
Y⿵冂⿱一口㇒⿴囗⿱一一 OT OCT 1730
XLFT OCT 1730
XRGT OCT 2050
DELT OCT 1
CNTR OCT O
XNDE OCT 50
YWD2 OCT 50
XWDH OCT 120
YWDH OCT 120
ALT OCT 0
YTP2 OCT 2310
YBT2 OCT 1470
XLT2 OCT 1470
XRT2 OCT 2310
DEL2 OCT 6
YDIS DEC 1424
XDIS DEC 624
DDIS DEC 10
DGCT OCT 0
＊
＊
＊
＊＊＊ILC
＊
＊interlaced raster scan
＊PERFORMS AN INTERLACED ZIG－ZAG RASTER SCAN FOR DISPLAY
＊
＊INPUT PARAMETERS：
＊YTOP，YBOT，XLFT，XRGT ：SCAN BOUNDARIES
＊DELT ：SPACING BETWEEN SCAN POINTS
＊CALLED By：
JST ILC
＊DAC YTOP
＊DAC YBOT
＊DAC XLFT
＊DAC XRGT
＊DAC DELT
＊
-

ILC DAC＊＊＊
LDA＊ILC
STA ILCT YTOP
IRS ILC
LDA＊ILC
STA ILCB YBOT

```
    IRS ILC
    LDA* ILC
    STA ILCL XLFT
    IRS ILC
    LDA* ILC
    STA ILCR XRGT
    IRS ILC
    LDA* ILC
    STA ILCD DELT
    IRS ILC
    LDA ILCD
    ADD ILCD
    Sta ILCV VERTICAL DELTA = 2*DELT
    CRA
    STA ILCI INTERLACE SWITCH
    STA ILCS LEFT-RIGHT SWITCH
*
JMP ILCU UPPER INTERLACE
ILCA LDA ILCI INTERLACE SWITCH TEST
    SNZ
    JMP ILCE EXIT
    CRA LOWER INTERLACE
    STA ILCI
    LDA ILCT
    SUB ILCD
    JMP **4
ILCU AOA UPPER INTERLACE
    STA ILCI
    LDA ILCT INITIALIZE Y
    STA ILCY INITIALIZE Y
    OTA •752 LOAD Y MED
    JMP *-1
    LDA ILCL INITIALIZE X
    STA ILCX
    OTA 1452 LOAD X MED,GO
    JMP *-1
    JMP ILCM BEGIN MOVING RIGHT
*
ILCN SUB ILCD GET NEXT ROW
    STA ILCX
    LDA ILCY
    SUB ILCV
    CAS ILCB
    JMP *+3
    SKP
    JMP ILCA END, BEGIN ANOTHER INTERLACE
    OTA 'll52 LOAD Y SHORT, GO
    JMP *-1
    STA ILCY
    LDA ILCS L-R SWITCH TEST
    SNZ
    JMP ILCM JUMP TO MOVE RIGHT
    CRA MOVE LEFT
    STA ILCS SET L-R SWITCH OFF
    LDA ILCX
ILCl SUB ILCD LOOP 1 (GO LEFT)
```

```
    CAS ILCL
    JMP *+4
    JMP *+3
    LDA ILCL
    JMP ILCN+1 END OF ROW
    OTA •352 LOAD`X SHORT, GO
    JMP *-1
    JMP ILCI
ILCM AOA MOVE RIGHT
    STA ILCS SET L-R SWITCH ON
    LDA ILCX
ILC2 ADD ILCD LOOP 2 (GO RIGHT)
    CAS ILCR
    JMP ILCN END OF ROW
    NOP
    OTA •352 LOAD X SHORT, GO
    JMP *-1
    JMP ILC2
*
ILCE LDA ILC
    ANA = 077777
    STA ILCO
    JMP* ILCO EXIT OUT
ILCT OCT 0 YTOP
ILCB OCT 0 YBOT
ILCL OCT 0 XLFT
ILCR OCT 0 XRGT
ILCD OCT 0 DELT
ILCI OCT 0 INTERLACE SWITCH
ILCS OCT 0 LEFT-RIGHT SWITCH
ILCV OCT O VERTICAL DELTA
ILCX OCT 0 SCAN X
ILCY OCT 0 SCAN Y
ILCO OCT O EXIT OUT
    FIN
*
*
*
*
*
***CSS
*
SET-CROSS, DISPLAY-CROSS
*
*
*
*
* CSS SETS THE PARAMETERS FOR THE DISPLAY OF A CROSS,
    I.E. A 'r+".
            CSS IS CALLED BY:
                    CALL CSS,N,DELT,Z
            WHERE
                N = THE NUMBER OF DISPLAYED POINTS
                    IN THE HORIZONTAL (OR VERTICAL) LINE OF THE CROSS
                DELT = THE SEPARATION BETWEEN DISPLAY POINTS
                Z = THE INTENSITY OF THE CROSS DISPLAY
```

```
                    (NOTE: DELT SHOULD NOT BE ODD WHEN N IS EVEN)
    CSD DISPLAYS ONCE A CROSS WHICH HAS BEEN SET UP BY CSS.
    CSD IS CALLED BY:
        CALL CSD,XMID,YMID
        WHERE
            (XMID,YMID) = THE MIDPOINT OF THE CROSS
        CSS
*-----------
*
CSN BSS 1
CSDL BSS 1
CSZ BSS 1
CSS DAC* **
    LDA* CSS
    STA CSN
    IRS CSS
    LDA* CSS
    STA CSDL
    IRS CSS
    LDA* CSS
    STA CSZ
    IRS CSS
    LDA CSN
    TCA
    STA CSMN -N
    LDA CSN
    SUB = 1
    MPY CSDL
    IAB
    ARS 1
    STA CSLG LEG LENGTH=(N-1)*DELT/2
    LDA CSS
    ANA =.37777
    STA *+2
    JMP* *+1
    BSS 1
**
CSXM BSS 1
CSYM BSS 1
CSD DAC* **
    LDA* CSD
    STA CSXM
    IRS CSD
    LDA* CSD
    STA CSYM
    IRS CSD
```

```
    LDA CSYM
    OTA '652 Y. SHORT
    JMP *-1
    LDA CSZ
    OTA •1452 Z
    JMP *-1
    LDX CSMN INDEX=-N
    LDA CSXM
    SUB CSLG XLEFT=XMID-LEG
    * HORIZONTAL LINE LOOP
CSHL OTA .352 X, SHORT, GO
    JMP *-1
    ADD CSDL
    IRS 0
    JMP CSHL
    LDA CSXM
    OTA .52 X, SHORT
    JMP *-1
    LDX CSMN
    LDA CSYM
    ADD CSLG YTOP=YMID+YLEG
*VERTICAL LINE LOOP
CSVL OTA '1152 Y, SHORT, GO
    JMP *-1
    SUB CSDL
    IRS 0
    JMP CSVL
    LDA CSD
    ANA = '37777
    STA *+2
    JMP* *+1
    BSS 1
*
CSMN OCT O -N
CSLG OCT 0 LEG LENGTH
    FIN
*
*
*
*
*
*
***DIS
*
    ORG !2000
* RASTER DISPLAY ROUTINE
* DISPLAYS PICTURE STORED IN STD FORM AT LOC
* CALLED BY
* CALL DIS,YTOP,XLEFT,DELT,LOC
* EXITED IF SS2 IS DOWN
*
DIY BSS 1
DIX BSS 1
DID BSS 1
DIS DAC* **
```

	LDA*	DIS	
	STA	DIY	
	STA	DIYD	
	IRS	DIS	
	LDA*	DIS	
	STA	DIX	
	STA	DIXD	
	IRS	DIS	
	LDA*	DIS	
	STA	DID	
	IRS	DIS	
	LDA	DIS	
	ANA	= 137777	
	STA	DIEX	
	LDA*	DIEX	
	STA	DISS	
	LDA	=-1	
	STA	DISW	
	CRA		
	STA	DIOX	
	STA	DIOY	
DIAG	LDX	DISS	
	LDA	0,1	
	TCA		
	STA	DIR	
	LDA	$1 \cdot 1$	
	TCA		
	STA	DIC	
* DI	SPLAY	RASTER	
DIA	LDA	DISW	
	CAS	$=-1$	
	JMP	DIA2	
	SKP		
	JMP	DIA2	
	LDA	DIOX	TEST OLD X BOUNDS
	CAS	$=600$	
	CAS	$=1500$	
	NOP		
	JMP	* + 4	IF OUT, NO CSD
	JST*	CSD $=$	
	DAC	DIOX	
	DAC	DIOY	.
	CRA		
	STA	DIST	STYLUS SWITCH
	INA	-1151	READ TABLET X
	JMP	*-1	
	LLR	3	
	ARS	2	
	STA	DITX	TABLET X
	INA	-1251	READ TABLET Y
	JMP	*-1	
	LLR	3	
	ARS	2	
	STA	DITY	TABLET Y
	IAB		
	STA	* +2	
	SKP		

```
    BSS 1
    ANA = = 33
    SZE
    JMP *-16 TABLET ERROR
    LDA *-4
    ANA = %44
    SZE SKIP ON STYLUS DOWN
    IRS DIST
    LDA DITX TEST TABX BOUNDS
    CAS =600
    CAS =1500
    NOP
    JMP DIAZ
    LDA DITY TEST TABY BCUNDS
    CAS =600
    CAS =1500
    NOP
    JMP DIA2
    JST* CSD= CROSS DISPLAY
    DAC DITX
    DAC DITY
    LDA DIST
    SZE
    JMP DIAZ
    LDA DITX
    STA DIOX
    SUB DIX
    IAB
    CRA
    DIV DID
    AOA
    STA XCNR
    LDA DITY
    STA DIOY
    LDA DIY
    SUB DITY
    IAB
    CRA
    DIV DID
    ADD DIR -NO.ROWS
    TCA
    STA YCNR
    JST* CSD= CROSS DISPLAY AGAIN
DAC DITX
DAC DITY
* GO THROUGH RASTER
DIA2 LDX DISS
    LDA DIR
    STA DIRN
    LDA DIY
    STA DIYN
DINR LDA DIYN
OTA •652 Y, SHORT
    JMP *-1
    SUB DID
    STA DIYN
    LDA DIX
```

```
    IAB
    LDA DIC
    STA DICN
DINP IAB
    NOP
    OTA .52 X: SHORT
    JMP *-1
    ADD DID
    IAB
    LDA 2.1
    OTA •1552 Z, GO
    JMP *-1
    IRS 0
    IRS DICN
    JMP DINP
    IRS DIRN
    JMP DINR
    SR1
    JMP DICP
    SS2
    JMP *+6
    LDA DISW
    CAS =-2 ROAD EDGE TEST
    JMP DIA
    JMP DIRQ
    JMP DIA
    IRS DIEX
    JMP* DIEX
* CALL CRG (CRL) ON SSI, SWT=2
* CALL PMD AND PML ON SSI, SWT=0
* CALL OBL ON SSI, SWT=1
* CALL DIS FOR LOC ON SSI, SWT=-1
* CALL CRG FOR ROAD EDGE ON SSl, SWT =-2
*
* REQUEST AND READ SWT
DICP JST* *+4
    BCI 3.5WT
    DAC >RR<
    STA DISW
    CAS =1
    JMP DICR CRGT ON SWT=2 OR MORE
    JMP DIOB SWT ON =1
    CAS =-1
    JMP DIPT PRINT ON =0
    SKP DIS WITH LOC ON =-1
    JMP DICR ROAD EDGE CRG ON =-2
    LDA LOC=
    STA DISS
    LDA DIXD
    STA DIX
    LDA DIYD
    STA DIY
    CRA
    STA DIOX
    STA DIOY
    JMP DIAG
DIPT JST* PMD= PRINT ON =0
```

```
    DAC LOC
    JST* PML=
    DAC LOC
    JMP DIA
    * REQUEST AND READ DXTP
    DIOB JST* *+4
        BCI 3.DXTP
    DAC >RR<
    STA DXTP
    * REQUEST AND READ DYTP
        JST* *+4
        BCI 3.DYTP
        DAC >RR<
        STA DYTP
    * REQUEST AND READ NROW
        JST* *+4
        BCI 3,NROW
        DAC >RR<
        STA NROW
    * REQUEST AND READ NCOL
        JST* *+4
        BCI 3,NCOL
        DAC >RR<
        STA NCOL
        JST* OBL=
        DAC XCNR
        DAC YCNR
        DAC DXTP
        DAC DYTP
        DAC NROW
        DAC NCOL
        DAC RECT
        DAC LOC
        LDA REC=
    STA DISS
        LDA =875
    STA DIX
        LDA =1225
        STA DIY
        JMP DIAG
    * CRG ON SWT=2 OR MORE
    * CRG FOR ROAD EDGE ON SWT=-2
    DICR SRI
        JMP DIA
        LDA DISW TEST SWT
        SPL
        JMP DIRE ROAD EDGE
    * REQUEST AND READ XO
        JST* *+4
        BCI 3,XO
        DAC >RR<
        STA DIXO
    * REQUEST AND READ YO
        JST* *+4
        BCI 3,YO
        DAC >RR<
        STA DIYO
```

* REQUEST AND READ THSH

JST* *+4
BCI 3,THSH
DAC >RR<
STA DITH
LDA $=10$
STA DICN
DICQ JST* CRL=
DAC DIXO
DAC DIYO
DAC DITH
DAC RECT
CAS $=-1$
SKP
JMP DIC2
LDA $=13777$
OTA •1452 Z
JMP *-1
DIC3 JST* CRG=
ALS 4
ADD $=860$ CENTER X DISPLAY
DIXS OTA $52 x$, SHORT
SKP
JMP DIC7
STA TEMP
ALS 16 WAIT
LDA $=120000$
SMK •20
CRA
SMK 20 RESET READY FF
LDA TEMP
JMP DIXS
DIC7 IAB
ALS 4
ADD $=800$ CENTER Y DISPLAY
DIYS
OTA . 1152
Y, SHORT, GO
SKP
JMP DIC8
STA TEMP
ALS 16 WAIT
LDA $=120000$
SMK •20
CRA
SMK •20 RESET READY FF
LDA TEMP
JMP DIYS
DIC8 SRI
JMP DIA
JMP DIC3
DIC2
SZE
JMP DIC4 NOT-ON-CONTOUR OR ISOLATED
LDA
SMI
JMP DIC6 TRY AGAIN
JMP DIC9 DARK POINT

* ROAD EDGE

DIRE	LDA	XCNR	
	STA	DIXO	
	LDA	YCNR	
	STA	DIYO	
* REO	QUEST	AND READ	. THSH
	JST*	* +4	
	BCI	3, THSH	
	DAC	>RR<	
	STA	DITH	
* RES	QUEST	AND READ	LNTH
	JST*	* + 4	
	BCI	3,LNTH	
	DAC	>RR<	
	TCA		
	STA	DIML	-LNTH
	LDA	$=20$	
	STA	DICN	
DIRO	JST*	CRL $=$	
	DAC	DIXO	
	DAC	DIYO	
	DAC	DITH	
	DAC	LOC	
	CAS	$=-1$	
	SKP		
	JMP	DIC2	
	LDA	$=13777$	
	OTA	-1452	z
	JMP	*-1	
	LDA	DIML	
	STA	DILG	
DIR3	JST*	CRG=	
	I AB		
	STA	TEMP	
	IAB		
	MPY	DID	SCALE X
	IAB		
	ADD	DIXD	CENTER X
DIRX	OTA	- 52	$X, S H O R T$
	SKP		
	JMP	DIR7	
	STA	TEMP + 1	
	ALS	16	WAIT
	LDA	$=120000$	
	SMK	- 20	
	CRA		
	SMK	- 20	RESET READY FF
	LDA	TEMP + 1	
	JMP	DIRX	
DIR 7	LDA	TEMP	
	ADD	DIR	(-NO.ROWS)
	AOA		LOWEST ROW IS O
	MPY	DID	SCALE Y
	IAB		
	ADD	DIYD	CENTER Y
DIRY	OTA	-1152	Y,SHORT,GO
	SKP		
	JMP	DIR8	

STA TEMP+1
ALS 16 WAIT
LDA $=\mathbf{2 0 0 0 0}$
SMK $\quad 20$
CRA
SMK $\quad 20$ RESET READY FF
LDA TEMP+1
JMP DIRY
DIR8 SRI
JMP DICP
IRS DILG
JMP DIR3
JMP* DI=Z SZC ON STYLUS DOWN; THEN DISPLAY LOC

* TYPE 'DARK POINT'

DIC9 JST* 1151
DEC -05
DAC *+2
JMP *+1+05
BCI 05,DARK POINT
JMP DICR
DIC4 AOA
SZE
JMP DIC5
LDA DICN
SMI
JMP DIC6

* TYPE 'NOT ON CONTOUR'

JST* 'l51
DEC -07
DAC *+2
JMP $\quad *+1+07$
BCI 07,NOT ON CONTOUR
JMP DICR

* TYPE 'ISOLATED Light POINT•

DIC5 JST* 1151
DEC - 10
DAC *+2
JMP *+1+10
BCI 10,ISOLATED LIGHT POINT
JMP DICR
DIC6 LDA DICN
SUB $=1$
STA DICN
LDA DIYO
AOA
STA DIYO
LDA DISW
CAS $=-2$
JMP DICQ
JMP DIRQ
JMP DIRQ
DIXO BSS 1
DIYO BSS 1
DILG BSS 1
DIML BSS 1
DITH BSS 1
DIXD BSS 1

DIYD BSS 1
DIOX BSS 1
DIOY BSS 1
DIR BSS 1
DIRN BSS l
DIYN BSS 1
DIC BSS 1
DICN BSS 1
DISS BSS 1
DIEX BSS 1
DITX 3SS 1
DITY BSS 1
DIST BSS 1
DISW BSS l
XCNR BSS 1
YCNR BSS 1
DXTP BSS 1
DYTP BSS 1
NROW BSS 1
NCOL BSS 1
DI=Z DAC DISZ
FIN
*
*
*
*
*
*
*

* DIS CONTINUED
*
*

ORG •3000
*
*

* CALL SZC ON STYLUS DOWN
*

DISZ INA •1151 GET STYLUS BIT
JMP *-1
SPL TEST STYLUS
JMP* DI=2 STYLUS UP: DISPLAY LOC
*REQUEST AND READ DELX
JST* * +4
BCI 3.DELX
DAC >RR<
STA DIZX

* REQUEST AND READ DELY

JST* *+4
BCI 3.DELY
DAC >RR<
STA DIZY

* CALL SUBROUTINE SZC

JST* SZC=
DAC DIZX
DAC DIZY
DAC DIXO
DAC DIYO


```
    LDA DIYG
    JST* '154 TYPE DECIMAL
    * TYPE ')'
    JST* 'l52
    DEC -01
    DAC *+2
    JMP *+1+01
    BCI Ol,)
    * CARR RET
            LDA =1212
            JST* 1145
            JMP* DI=2
DI=2 DAC DIAZ
DIZX BSS 1
DIZY BSS 1
DIL BSS 1
DIW BSS 1
DIXC BSS 1
DIYC BSS 1
DIXG BSS 1
DIYG BSS 1
*
*
*
*
*
*
*
*
*
*
*
***PMD,IML
*
*
*
*
* PRINT MATRIX
*
* THE LINE PRINTER PRINTS A MATRIX FROM A
STORED PICTURE.
PMD PRINTS AN ALPHABETIC 'DIGIT' PROPORTIONAL TO
    THE OCTAL VALUE OF THE POINT. (FROM DARK TO
    BRIGHT, }64\mathrm{ LEVELS: @,A-Z,1-5 WITH OVERPRINTED
    '.', AND @,A-Z,l-5 WITHOUT OVERPRINTING)
    PML PRINTS AN OVERPRINTED GREY-LEVEL CHARACTER
        CORRESPONDING TO THE BRIGHTNESS OF THE POINT.
    PMD AND PML USE THE CLEAR FILTER PICTURE
    CALLED BY:
    CALL PM--.ADDI
        WHERE ADDI IS THE NAME OF THE FIRST ADDRESS
                        OF THE PICTURE
                            II.E. ADDI CONTAINS THE NO. OF ROWS,
```

* the picture is assumed to be in standard form.
* IF NO. OF COLUMNS > 120, PRINTS FIRST 120 COLUMNS ONLY.
* no spaces are left at the bottoms and tops of pages.
* the index register is used by these routines

PMD DAC **
LDA* PMD
STA PMAI FIRST ADDR OF PICTURE
LDA PMD
AOA
STA PMEX EXIT ADDRESS
CRA PMCS COLOR SWITCH $=0$
STA PMDG DIGIT-GRAYLEVEL SWITCH $=0$
AOA PMSW INITIALIZE OVERPRINT SWITCH TO 1
JMP PMIN
PML DAC **
LDA* PML
STA PMAI FIRST ADDR OF PICTURE
LDA PML
AOA
STA PMEX EXIT ADDRESS
CRA
STA PMCS COLOR SWITCH $=0$
AOA
STA PMSW INITIALIZE OVERPRINT SWITCH TO 1
STA PMDG DIGIT-GRAYLEVEL SWITCH $=1$
JMP PMIN
PMIN LDA PMSW
SNZ
JMP *+4
LDA* PMAI
ALS $1 \quad 2$ * NO. ROWS
SKP
LDA* PMAI NO. ROWS
TCA
STA PMYC Y COUNTER
IRS PMAI
LDA* PMAI
TCA
STA PMMP -PTS/ROW
IRS PMAI
LDA PMAI FIRST Z-POINT LOCATION
STA PMZ Z LOCATION
STA PMOZ OLD Z
SKS •0403 TEST IF CAN FORM-FEED
JMP *-1
OCP •1303 FORM-FEED

* PRINT A LINE LOOP
* CLEAR BUFFER

PMPL LDX $=-60$
PM2B LDA $=\cdot 120240$ TWO BLANKS

```
    STA PMBU+60,1
    IRS 0
    JMP PM2B
* GET NEXT LINE INTO BUFFER
    LDA =1
    CAS PMCS TEST COLOR SWITCH
    JMP PMCF CS = O, CLEAR FILTER
    JMP PMRF CS = 1, RED FILTER
    LDA =3
    CAS PMCS TEST COLOR SWITCH
    JMP PMGF CS = 2, GREEN FILTER
    JMP PMBF CS = 3, BLUE FILTER
* PREPARE TO PRINT
PMPP LDX =-60 TO PRINT 120 CHARS
    5KS •0203 TEST IF PRINTER READY
    JMP *-1
    SKS !0403 TEST IF CAN MOVE PAPER
    JMP *-1
    OCP '1703 LINE FEED ONE LINE
    OCP '0103 PREPARE TO PRINT VIA I/O BUS
    JMP PNPB
* PREPARE TO PRINT FOR OVERPRINTING
PMP2 LDX =-60 TO PRINT 120 CHARS
    SKS '0203 TEST IF PRINTER READY
    JMP *-1
    LDA PMSW TEST OVERPRINT SWITCH
    SNZ
    JMP PMSS OVERPRINT: NO LINE FEED
    SKS '0403 TEST IF CAN MOVE PAPER
    JMP *-1
    OCP !l703 LINE-FEED ONE LINE
    LDA PMOZ GET OLD Z
    STA PMZ STORE FOR NEXT OVERPRINT
    CRA
    STA PMSW
    OCP '0103 PREPARE TO PRINT VIA I/O BUS
    JMP PMPB
PMSS LDA =1 OVERPRINT
    STA PMSW
    LDA PMZ
    STA PMOZ SET OLD Z
    LDA =-500 DELAY 500*18 USEC
    AOA "
    LLR 32 "
    SPL "
    JMP *-3 "
    OCP '0103 PREPARE TO PRINT VIA I/O BUS
* PRINT BUFFER-WORD LOOP
PMPB LDA PMBU+60,1 ONE WORD (2 CHARS)
    OTA -0003 2 CHARS TO PRINTER
    JMP *-1
    IRS 0 TEST IF WORD FINISHED
    JMP PMPB GET NEXT 2 CHARS.
    OCP '0203 PRINT TWO CHARS.
    IRS PMYC TEST Y COUNTER
    JMP PMPL NEXT LINE
    JMP* PMEX EXIT
```

```
* LOAD 㲘FER (FUR CLEAR FILTER)
*--------------------------
PMCF LDA PMMP -FTS/ROW
    STA PMPC POINT COUNTER
    LDX =-60 FOR 120 POINTS
    LDA PMDG. DIGIT-GRAYLEVEL SWITCH
    SZE TEST SWITCH
    JMP PMCC
* LOAD RUFFER WITH ALPHABETIC DIGITS (@,A-Z,1-5)
PMCO LDA PMSW
    SZE
    JMP PMCA
    LDA* PMZ Z
    ANA ='2000 GET TOP EIT
    SZE
    JMP *+3
    LDA =127000 "."
    JMP PMCK
    LDA ='120000 BLANK
    JMP PMCK
PMCA LDA* PMZ Z
    ANA ='1740 GEl BITS 2-6
    ALS 1
    CAS =.3200
    ADD ='2600 MAKE 1-5
    NOP
    ALS 2
PMCK STA PMEU+60,1 FIRST CHAR TO BUFFER
    IRS PMZ
    IRS PMPC TEST POINT-COUNTER
    JMP *+4
    ERA = '000240 PUT IN BLANK
    5TA PMBU+60,1
    JMP PMP2 RETURN
    LDA PMSW
    SZE
    JMP PMCO
    LDA* PMZ Z
    ANA ='2000 GET TOP BIT
    SZE
    JMP *+3
    LDA =.56
    JMP PMCJ
    LDA ='40
    JMP PMCJ
PMCG LDA* PMZ Z
    ANA ='1740
    LGR 5 GET EITS 2-6
    CAS =132
    ADD =.26 MAKE 1-5
    NOP
PMCJ ERA PMBU+60,1
    STA PMBU+60,1 SECOND CHAR TO BUFFER
    IRS PMZ
    IRS PMPC TEST POINT-COUNTER
    SKP
```

```
    JMP PMP2 RETURN
    IRS O
    JMP PMCO
    LDA PMZ
    SUR PMPC -(-REMAINING POINTS)
    STA PMZ
    JMP PMP2 RETURN
    * LOAD BUFFER WITH GRAYLEVEL CHARACTERS
    PMCC LDA =l
    STA PMI2 CHARI-CHAR2 SWITCH
    PMCN LDA PMSW
            SNZ
            JMP *+3
            LDA PMLI LEVEL LIST 1 LOC
            SKP
            LDA PML2 LEVELLIST 2 LOC
            STA PMLC LEVEL LIST LOC
            LDA* PMZ Z
            ANA = 3600 TOP 4 BITS
            ARS 7 RIGHT JUSTIFY
PMCG SR3
            SUB PMDP DARKEN PRINTOUT ON S53 UP
            ADD PMLC
            STA PMLC GRAY LEVEL LOCATION
            LDA* PMLC
            STA PMLV GRAY LEVEL
            LDA PM12 CHARI-CHAR2 SWITCH
            CAS =1
            JMP PMCT
            LDA PMLV CHARACTER ONE
            ALS 8
            STA PMEU+60,1 TO BUFFER
                            LDA =2 NEXT CHAR IS 2ND
                            STA PM12
                            IRS PMZ
                            IRS PMPC TEST POINT-COUNTER
                            JMP PMCN NEXT CHAR
                            LDA PMBU+60,1
                            ERA = 240 PUT IN BLANK
                    STA PMBU+60,1
                    JMP PMP2 RETURN
PMCT LDA PMLV CHARACTER TWO
            ERA PMBU+60,1
            STA PMRU+60,1 TO BUFFER
            LDA =1 NEXT CHAR IS IST
            STA PMI2
            IRS PMZ
            IRS PMPC TEST POINT-COUNTER
            SKP
            JMP PMP2 RETURN
            IRS 0
            JMP PMCN NEXT CHAR
            LDA PMZ
            SUB PMPC -(- REMAINING POINTS)
            STA PMZ
            JMP PMP2
** TEMP
```


*

```
*
***STO
    ORG !4000
*
* ROUTINE TO RASTER SCAN AREA
* BETWEEN YTOP,YBOT,XL, AND XR
* AT SPACING DELT AND STORE IN
* LOCATIONS FROM LOC IN STD FORM.
* CAlLING SEQuENCE:
* JST STO
* DAC YTOP
* DAC YBOT
* DAC XL
* DAC XR
* DAC DELT
* DAC LOC
*
STEX BSS 1
STL BSS 1
STCC BSS 1
STOT BSS 1
STOB BSS I
STOL BSS l
STOR BSS 1
STOD BSS 1
STO DAC* **
    LDA* STO
    STA STOT
    IRS STO
    LDA* STO
    STA STOB
    IRS STO
    LDA* STO
    STA STOL
    IRS STO
    LDA* STO
    STA STOR
    IRS STO
    LDA* STO
    STA STOD
    IRS STO
    LDA STOT
    OTA '1052 Y, LONG
    JMP *-1
    LDA STO
    SSP
    STA STEX
    LDA* STEX
    STA STL
    IRS STEX
    AOA
    STA STCC
    AOA
    STA O
    SKP
    IRS* STCC
```

```
    LDA *-1
    STA STO2
    CRA
    STA* STL
    STA* STCC
    LDA STOL
STO3 OTA '352 X, SHORT, GO
JMP *-1
CAS STOR
JMP STO4
STOS NOP
    ADD STOD
    I AB
    INA •1070
    JMP *-1
    ARS 7
    STA 0,1
    IRS 0
STO2 IRS* STCC COLUMN COUNT
    IAB
    JMP STO3
* END OF LINE
STO4 LDA STO5 (NOP)
    STA STO2 NOP FOR IRS* STCC
    IRS* STL ROW COUNT
    LDA STOT
    SUB STOD
    CAS STOB
    NOP
    JMP STO6
    JMP* STEX
STO6 OTA 'l052 Y, LONG
    JMP *-1
    STA STOT
    JMP STO3-1
*
*
*
***OBL
*
* OBLIQUE SCAN
*
* PERFORMS, ON A STORED PICTURE, A RASTER SCAN OF AN OBLIQUE
* RETANGLE, AND STORES THE SCANNED POINTS IN STANDARD
* FORM. THE SCAN LINES ARE AT THE OBLIQUE ANGLE OF THE
    RECTANGLE.
    CALLED BY
    CALL OBL,XC,YC,DXTP,DYTP,NROW,NCOL,RECT,PICT
    WHERE
            (XC,YC) = THE CORNER POINT OF THE OBLIQUE
                RECTANGLE WHICH WILL BE STORED AS
                        THA FIRST POINT OF THE SCAN, I.E.
                        THE UPPER LEFT POINT IF THE
                        RECTANGLE WAS ALONG THE COORDINATE
                                AXES .
```

* INITIALIZE
OBXC BSS I
OBYC BSS 1
OSDX BSS I
OBDY BSS 1
OBNR BSS 1
OBNC BSS 1
OBST BSS 1
OBPC BSS 1
OBL DAC* **
LDA* OBL
STA OBXC
IRS OBL
LDA* OBL
STA OBYC
IRS OBL
LDA* OBL
STA OBDX
IRS OBL
LDA* OBL
STA OBDY
IRS OBL
LDA* OBL
STA OBNR
IRS OBL
LDA* OBL
STA OBNC
IRS OBL
LDA OBL
ANA $=137777$
STA OBL2
LDA* OBL2
STA OBST
IRS OBL2
LDA* OBL2
STA OBPC
IRS OBL2
LDA OBNR
STA* OBST NO. ROWS TO BE SCANNED
TCA
STA OBRC ROW COUNTER
IRS OBST
LDA OBNC
STA* OBST NO. COLS TO BE SCANNED


```
*
* DLN IS CALLED REPEATEDLY, AND EACH TIME
    IT RETURNS THE X AND Y VALUES OF
    THE NEXT POINT ON THE DIGITIZED LINE:
        The X value IS RETURNED IN THE A-REGISTER.
        THE Y VALUE IS RETURNED IN THE B-REGISTER.
    IT IS CALLED BY:
                CALL DLN
SET-UP DRAW LINE
*
DLX BSS l
DLY BSS 1
DLDX BSS 1
DLDY BSS 1
DLS DAC* **
    LDA* DLS
    STA DLX
    IRS DLS
    LDA* DLS
    STA DLY
    IRS DLS
    LDA* DLS
    STA DLDX
    IRS DLS
    LDA* DLS
    STA DLDY
    IRS DLS
    LDA DLDX
    SMI
    JMP DLXP
    LDA =-1
    SKP
DLXP LDA =1
    STA DLSX SX = SGN(DX)
    LDA DLDY
    SMI
    JMP DLYP
    LDA =-1
    SKP
DLYP LDA =l
    STA DLSY SY = SGN(DY)
    LDA DLDX
    SPL
    TCA
    STA DLAX AX = ABS(DX)
    LDA DLDY
    SPL
    TCA
```

	STA	DLAY	$A Y=A B S(D Y)$	
	CAS	DLAX		
	JMP	DLYG		
NOP				
*	ABSDY <	< ABSDX	(OCTANTS 1,4,5,8)	
	ADD	DLAY		
	STA	DLA	$A=2 * A B S D Y$	
	SUB	DLAX		
	STA	DLT	INITIAL $T=2 * A B S D Y$	
	SUB	DLAX	$B=2 * A B S D Y-2 * A B S D$	
	STA	DLB		
CRA				
	JMP	DLEX		
*	ABSDY >	- ABSDX	(OCTANTS $2,3,7,8)$	
DLYG	G LDA	DLAX		
	ADD	DLAX	$A=2 * A B S D X$	
	STA	DLA		
	SUB	DLAY		
	STA	DLT	INITIAL T $=2 * A B S D X$	
	SUB	DLAY		
	STA	DLB	$B=2 * A B S D X-2 * A B S D Y$	
$A O A$				
DLEX	X STA	DLSW	OCTANT SWITCH	
	LDA	DLS		
	ANA	$=137777$		
	STA	* +2		
	JMP*	* +1		
	BSS	1		
FIN				
*				
* DRAW LINE				
*----------				
*				
DLN	DAC	**		
	LDA	DLSW	TEST OCTANT SWITCH	
	SZE			
	JMP	DLO2		
* FOR OCTANTS 1,4,5,8:				
	LDA	DLT		
SPL			.	
	JMP	DL1L		
	ADD	DLB	$T>0$ OR $T=0$	
	STA	DLT	$T=T+B$	
	LDA	DLY		
	ADD	DLSY	$Y=Y+S Y$	
	STA	DLY		
IAB				
	LDA	DLX		
	ADD	DLSX	$x=x+5 x$	
	STA	DLX		
	JMP*	DLN		
DLIL	L ADD	DLA	T<0	
	STA	DLT	$T=T+A$	
	LDA	DLY	$Y=Y+0$	
	$I A B$			

```
    LDA DLX
    ADD DLSX }x=x+S
    STA DLX
    JMP* DLN
* FOR OCTANTS 2,3,6,7:
DLO2 LDA DLT
    SPL
    JMP DL2L
    ADD DLB T > O OR T = 0
    STA DLT T = T + B
    LDA DLY
    ADD DLSY Y = Y + SY
    STA DLY
    IAB
    LDA DLX
    ADD DLSX X = X + SX
    STA DLX
    JMP* DLN
DL2L ADD DLA
    STA DLT T = T + A
    LDA DLY
    ADD DLSY Y = Y + A
    STA DLY
    IAB
    LDA DLX X = X + 0
    JMP* DLN
DLSX BSS 1
DLSY BSS 1
DLAX BSS 1
DLAY BSS 1
DLA BSS 1
DLT BSS 1
DLB BSS l
DLSW BSS 1
    FIN
*
*
***D2N
*
* A SECOND VERSION OF DLN, FOR DRAWING TWO LINES
    SIMULTANEOUSLY: ONE WITH DLN AND ONE WITH D2N.
    USE D2N AND D2S
*
*-----------
* SET-UP DRAW LINE
*
D2X BSS 1
D2Y BSS l
D2DX BSS l
```



```
    STA D2Y
    IAB
    LDA D2X X = X + 0
    JMP* D2N
    *
    D2SX BSS 1
    D2SY BSS l
    D2AX BSS 1
    D2AY BSS 1
    D2A BSS 1
    D2T BSS 1
    D2B BS5 1
    D2SW BSS 1
    *
    *
*
*
*
*
*
*
    FIN
*
*
*
***SQR
    ORG !5000
* SQUARE ROOT
* FOR A-REGISTER = N > O,
* RETURNS A-REGISTER = SQUAREROOT (N)
* FOR A-REGISTER = O, OR A-REGISTER < O,
                        RETURNS A-REGISTER = 0.
    ROUNDING TAKES PLACE SO AS TO RETURN THE LARGEST
    NUMBER, A, SUCH THAT :
                A*(A+1) <OR=N.
    THE X REGISTER IS PRESERVED.
    CALLED BY:
            CALL SQR
* CALL
*
*
SQR DAC **
        SNZ
        JMP* SQR
        SPL
        JMP SQRO
        STX SQRX SAVE X
        STA SQRN SAVE NUMBER
```

```
    NRM
    SCA
    ARS l
    STA 0
    LDA SQRI,1 2**(P/2)
    LDX =-3 THREE ITERATIONS
SQRI STA
    LDA SQRN GET ORIG NUMBER
    IAB
    CRA
    DIV SQRA NUMBER/LASTAPPROX
    ADD SQRA
    LGR l
    IRS 0
    JMP SQRI
    STA SQRA
    AOA
    MPY SQRA A*(A+1)
    IAB
    RCB
    CAS SQRN
    NOP
    SCB
    LDA SORA
    SSC
    AOA
    LDX SQRX
    JMP* SQR
SQRO CRA
    JMP* SQR RETURN ZERO FOR N < O
SQRN OCT O
SQRX OCT O
SQRA OCT O
SQRI OCT 000200 INITIAL APPROXIMATIONS
    OCT 000100
    OCT 000040
    OCT 000020
    OCT 000010
    OCT 000004
    OCT 000002
    OCT 000001
    FIN
    CALL SZC,DELX,DELY,INX,INY,THSH,LOC
```

 DELY/DELX \(=\) THE DIRECTED SLOPE OF THE CENTER LINE
 OF THE VEHICLE (THE SIGNS OF DELY AND DELX
 GIVING THE QUADRANT).
 (INX, INY) \(=\) THE INITIAL POINT OF THE CONTOUR-TRACE
 IN STORED-PICTURE COORDINATES.
 THSH = THE CONTOUR-TRACE THRESHOLD.
 LOC IS THE ADDRESS OF THE STORED PICTURE.
 THE FOLLOWING IS FOUND:
 LNTH = THE EXTENT OF THE VEHICLE IN THE DIRECTION
 ALONG ITS CENTER LINE.
 WDTH = THE EXTENT OF THE VEHICLE IN THE DIRECTION
 PERPENDICULAR TO ITS CENTER LINE.
 (XCTR,YCTR) \(=\) THE CENTER POINT OF THE VEHICLE, BASED
 ON EXTENT.
 (XGRV,YGRV) \(=\) THE CENTER OF GRAVITY OF THE VEHICLE
 BASED ON ITS CONTOUR.
 OVERFLOW MAY OCCUR FOR \(X\) OR \(Y>100\).
 THIS WILL NOT ARISE IF PICTURE SUBSETS LESS
 THAN \(100 \times 100\) ARE USED.
 SZDX BSS 1
SZDY BSS 1
SZIX BSS 1
SZIY BSS 1
SZTH BSS 1
SZC DAC* **
LDA* SZC
STA SZDX
IRS SZC
LDA* SZC
STA SZDY
IRS SZC
LDA* SZC
STA SZIX
IRS SZC
LDA* SZC
STA SZIY
IRS SZC
LDA* SZC
STA SZTH
IRS SZC
LDA SZC
SSP
STA TEMP
LDA* TEMP

```
    STA SZLC
    IRS SZC
* INITIALIZE
    CRA
    STA SZXT
    STA SZYT
    STA SZNP
    LDA ='100000 MOST NEG NO.
    STA SZHS
    STA SZHR
    LDA ='77777 MOST POS NO.
    STA SZLS
    STA SZLR
    LDA =-2
    STA SZOA
* SCALE UP DX AND DY SO HIGHEST ABS VALUE = 100
    LDA SZDY
    SPL
    TCA
    STA SZAY ABS DY
    LDA SZDX
    SPL
    TCA ABS DX
    CAS SZAY
    JMP *+3 ABSDX > ABSDY
    NOP ABSDX = ABSDY
    LDA SZAY ABSDY > ABSDX
    STA SZHA HIGHEST ABS D
    SUB =100
    SMI
    JMP SZSU HIGHEST ABS D > 100
    LDA =100
    IAB
    CRA
    DIV SZHA
    STA SZSF SCALE FACTOR
    MPY SZDX
    LLR 1
    IAB
    ARR 1
    STA SZDX SCALE UP DX
    LDA SZSF
    MPY SZDY
    LLR l
    IAB
    ARR l
    STA SZDY SCALE UP DY
* SET-UP CONTOUR TRACE
SZSU JST* CRL=
    DAC SZIX
    DAC SZIY
    DAC SZTH
SZLC DAC **
    CAS =-1
    SKP
    JMP SZER ERROR RETURN
* GET CONTOUR POINT
```

```
SZPT JST* CRG=
    STA SZX
    IAS Y TO A-REG
    STA SZY
* TEST IF COMPLETED ONCE AROUND CONTOUR
    CAS SZIY
    JMP SZPJ
    SKP Y = INIT Y
    JMP SZPJ
    LDA SZX
    CAS SZIX
    JMP SZPJ
    SKP X = INIT X
    JMP SZPJ
    IRS SZOA
    JMP SZPJ
    JMP SZFQ ONCE AROUND
* FIND PROJECTIONS OF CONTOUR POINT
SZPJ LDA SZY
    MPY SZDX
    LLR l
    IAB
    ARR l
    STA TEMP
    LDA SZX
    MPY SZDY
    LLR l
    IAB
    ARR 1
    SUB TEMP
    STA SZR R = U*Q = X*DY - Y*DX
    LDA SZX
    MPY SZDX
    LLR 1
    IAB
    ARR 1
    STA TEMP
    LDA SZY
    MPY SZDY
    IAB PRODUCT TO A
    ADD TEMP
    STA SZS S = V*Q = X*DX + Y*DY
* TEST IF EXTREME POINT
    CAS SZHS S VS.HI S
    STA SZHS NEW HI S
        NOP
        CAS SZLS S VS. LO S
        NOP
        SKP
        STA SZLS NEW LO S
        LDA SZR
        CAS SZHR R VS.HI R
        STA SZHR NEW HI R
        NOP
        CAS SZLR R VS. LO R
        NOP
        SKP
```



```
    DIV
    SZQ2
    SGL
    STA TEMP
    LLS 1
    CRA
    DIV SZO2
    ADD TEMP
    ARS l
    STA SZXC
    LDA SZHR
    ADD SZLR
    MPY SZDX
    DBL
    STA TEMP
    SGL
    LDA SZHS
    ADD SZLS
    MPY SZDY
    DBL
    SUB TEMP
    DIV SZO2
    SGL
    STA TEMP
    LLS 1
    CRA
    DIV SZO2
    ADD TEMP
    ARS 1
    STA SZYC YC=( (HIS+LOS)*DY - (HIR+LOR)*DX )/2*Q**2
    * FIND CENTER OF GRAVITY (XGRV,YGRV)
    LDA SZXT
    IAB
    CRA
    DIV SZNP
    STA SZXG XGRV = XTOT/NO.PTS
    LDA SZYT
    IAB
    CRA
    DIV SZNP
    STA SZYG YGRV = YTOT/NO.PTS
* return values
SZRV LDA SZL
    STA* SZC
    IRS SZC
    LDA SZW
    STA* SZC
    IRS SZC
    LDA SZXC
    STA* SZC
    IRS SZC
    LDA SZYC
    STA* SZC
    IRS SZC
    LDA SZXG
    STA* SZC
    IRS SZC
    LDA SZYG
```

```
    STA* SZC
    IRS SZC
    LDA SZC
    SSP
    STA TEMP
    JMP* TEMP
    * ERROR RETURN
    SZER CRA
            STA SZL
            STA SZW
            STA SZXC
            STA SZYC
            STA SZXG
            STA SZYG
            JMP SZRV
    SZX BSS 1
    SZY BSS 1
    SZAX BSS 1
    SZAY BSS 1
    SZHA BSS 1
    SZSF BSS 1
    SZOA BSS 1
    SZR BSS 1
    SZS BSS 1
    SZHR BSS 1
    SZLR BSS 1
    SZHS BSS 1
    SZLS BSS 1
    SZXT BSS 1
    SZYT BSS 1
    SZNP BSS l
    SZQ BSS 1
SZO2 BSS 1
SZL BSS 1
SZW BSS 1
SZXC BSS 1
SZYC BSS 1
SZXG BSS 1
SZYG BSS 1
*
*
*
*
*
*
***CRG,CRL,CRD
*
*
* CONTOUR TRACE ALONG A LIGHT-DARK CONTOUR
* KEEPING AN AREA ON THE RIGHT.
* FUNCTION CRL SETS UP A CONTOUR TRACE
* KEEPING THE LIGHT AREA ON THE RIGHT.
* FUNCTION CRGT PERFORMS THE TRACE. IT STARTS FROM
* AN INITIAL LIGHT POINT (XO,YO) WHICH IS ON
```

```
THE CONTOUR, AND FINDS THE NEXT CONTOUR POINT.
A THRESHOLD DETERMINES WHETHER A POINT IS
    CONSIDERED DARK (DK) OR LIGHT (LT).
CRG LIGHT-ON-RIGHT ALGORITHM:
    -GO COUNTERCLOCKWISE IN LIGHT REGION.
    -GO CLOCKWISE IN DARK REGION.
    -IF HIT THREE LIGHT POINTS IN SUCCESSION,
                ASSUME NEXT POINT IS DARK, AND THUS
                TAKE A DIAGONAL STEP.
            -A LIGHT POINT IS OUTPUT WHENEVER THERE IS
            A LIGHT-DARK TRANSITION (EXCEPT IF THE
                POINT HAS ALREADY BEEN OUTPUT).
SEE SEC. 5B OF PRERAU THESIS FOR MORE DETAILS.
THE ALGORITHM IS SHOWN THERE IN FIG. 5B-4.
CRL IS CALLED BY
    CALL CRL,XO,YO,THSH,PICT
        WHERE (XO,YO) IS THE INITIAL CONTOUR POINT
            THSH IS THE THRESHOLD
            PICT IS THE FIRST LOCATON OF THE CTORED
                PICTURE.
IF THE INITIAL POINT IS IN ERROR, CRL RETURNS:
        A-REGISTER = -1
        B-REGISTER = O IF (XO,YO) IS NOT LIGHT
            -l IF (XO,YO) IS NOT ON THE CONTOUR
                        -2 IF (XO,YO) IS AN ISOLATED LIGHT POINT.
CRG IS THEN CALLED BY
    CALL CRG
IT RETURNS THE NEXT CONTOUR POINT WITH
        A-REGISTER = X VALUE
        B-REGISTER = Y VALUE
THIS POINT IS NOT ALWAYS THE SAME AS THE POINT THE trace IS
UP TO, WHICH IS STORED IN (CRXT,CRYT).
THE INDEX REGISTER IS CHANGED BY CRL AND
CRG, AND THIS VALUE IS USED BY THE NEXT
CALL TO CRG
CRVL IS AN INTERNAL FUNCTION WHICH FINDS
WHETHER (CRXT,CRYT) IS DARK OR LIGHT:
    IF LIGHT (I.E. Z>THSH), RETURN A-REGISTER = 1.
    IF DARK (I.E. Z<THSH), RETURN A-REGISTER = 0.
                            -----------------------------------------
FUNCTION CRD SETS UP A CONTOUR TRACE
KEEPING THE DARK AREA ON THE RIGHT.
FUNCTION CRG PERFORMS THE TRACE IN THIS
CASE ALSO. IT STARTS FROM AN INITIAL
DARK POINT (XO,YO) WHICH IS ON THE
CONTOUR, AND FINDS THE NEXT CONTOUR POINT.
```

```
* A-REGISTER = I IF POINT IS DARK.
* otherwise , crd is the same as the
* CRL CASE ABOVE, (EXCEPT THE 'DK' AND 'DARK'
* SHOULD BE INTERCHANGED WITH 'LT' AND 'LIGHT' IN THE
* CRL COMMENTS).
*
* ------------------------------------------
**
*
* SET-UP 'CONTOUR TRACE KEEPING
* LIGHT AREA ON RIGHT'
*--------------------
*
*
CRL DAC* **
    LDA* CRL
    STA* CRX=
    IRS CRL
    LDA* CRL
    STA* CRY=
    IRS CRL
    LDA* CRL
    STA* CRT=
    IRS CRL
    LDA CRL
    ANA = '37777
    STA CRRL
    LDA* CRRL
    STA CRPC FIRST LOC OF PICT
    IRS CRRL RETURN LOCATION
* SET UP CRVL OUTPUTS
    CRA
    STA* CR=D CRVL OUTPUT = O, FOR DK POINT
    AOA
    STA* CR=L CRVL OUTPUT = 1, FOR LT POINT
* SET-UP PICTURE REFERENCES
CRPR LDA* CRPC ROWS OF PICT
    STA* CRW=
    SUB =1
    STA* CRR= ROWS - 1
    IRS CRPC
    LDA* CRPC
    STA* CRC= COLS OF PICT
    LDA CRPC PICT(1)-1
    AOA
    STA* CRP= PICT(1)-1 + 1
* FIND STARTING STATE
    JST* CRV= TEST XO,YO
    SNZ
    JMP CREO DK: ERROR --- NOT LIGHT
    LDA* CRX=
    STA CRXO XO
```

LDA* CRY=
STA CRYO YO
SUB =1
STA* CRY=
JST* CRV = TEST XO,YO-1
SNZ
JMP CRTI DK: TEST FOR ISOLATED POINT
LDA CRYO
AOA
STA* CRY=
JST* CRV = TEST XO,YO+1
SNZ
JMP CRSO DK: START AT STATE 10
LDA CRYO
STA* CRY=
LDA CRXO
AOA
STA* CRX=
JST* CRV = TEST X0+1,Y0
SNZ
JMP CRSI DK: START AT STATE ll
LDA CRXO
SUB $=1$
STA* CRX=
JST* CRV= TEST XO-1,YO
SNZ
JMP CRS2 DK: STAT AT STATE 12
LDA $=-1$ LT: ERROR -NOT ON CONTOUR
IAB
LDA $=-1$
JMP CREX
CREO
IAB
LDA $=-1$
JMP CREX

* TEST IF ISOLATED DARK POINT

CRTI LDA CRYO
AOA
STA* CRY=
JST* CRV $=$ TEST XO,YO+1
SZE
JMP CRS9 LT: START AT STATE 9
LDA CRXO
SUB $=1$
STA* CRX=
JST* CRV = TEST XO-1,YO+1
SZE
JMP CRS9 LT: START AT STATE 9
LDA CRYO
STA* CRY=
JST* CRV = TEST XO-1,Y0
SZE
JMP CRS9 LT: START AT STATE 9
LDA CRXO
AOA
STA* CRX=
JST* CRV = TEST $X 0+1, Y 0$

LDA CRYO
SUB $=1$
STA* CRY=
JST* CRV = TEST XO+1,YO-1
SZE
JMP CRS9 LT: START AT STATE 9
LDA CRYO
AOA
STA* CRY=
JST* CRV = TEST XO+1,YO+1
SZE
JMP CRS1 LT: START AT STATE 11
LDA CRXO
SUB $=1$
STA* CRX=
LDA CRYO
SUB $=1$
STA* CRY=
JST* CRV= TEST XO-1, YO-1
SZE
JMP CRSI LT: START AT STATE 11
LDA $=-2$ DK: ERROR -- ISOLATED DARK POINT
IAB
LDA $=-1$
JMP CREX

* EXITS
$\begin{array}{lll}\text { CRS9 } & \text { LDX } & =9 \\ & \text { JMP } & \text { CRCE } \\ \text { CRSO } & \text { LDX } & =10 \\ & \text { JMP } & \text { CRCE } \\ \text { CRS1 } & \text { LDX } & =11 \\ & \text { JMP } & \text { CRCE } \\ \text { CRS2 } & \text { LDX } & =12\end{array}$
CRCE
STA* CR=X
STA* CR=Y
LDA CRYO
STA* CRY=
IAB
LDA CRXO
STA* CRX=
CREX JMP* CRRL
EXIT

CONT INUE
OLD X OUTPUT
OLD Y OUTPUT
*
$C R X=D A C \quad C R X T$
CRY = DAC CRYT
CRT = DAC CRTH
CRXO BSS 1
CRYO BSS 1
CRW = DAC CRRW
$C R C=D A C \quad C R C L$
CRRL BSS 1
CR=D DAC CROD
$C R=L$ DAC CROL
CR=X DAC CROX
$C R=Y$ DAC CROY

```
CRR= DAC CRRI
CRPC ESS l
CRP= DAC CRPI
CRV= DAC CRVL
*
*
*---------------------
* SET up CONTOUR TRACE KEEPING
* DARK AREA ON RIGHT
*----------------------
CRD DAC* **
    LDA* CRD
    STA* CRX=
    IRS CRD
    LDA* CRD
    STA* CRY=
    IRS CRD
    LDA* CRD
    STA* CRT=
    IRS CRD
    LDA CRD
    ANA = 137777
    STA CRRL
    LDA* CRRL
    STA CRPC FIRST LOC OF PICT
    IRS CRRL RETURN LOCATION
* SET up CRVL OUTPUTS
        CRA
        STA* CR=L CRVL OUTPUT = 0, FOR LT POINT
        AOA
        STA* CR=D CRVL OUTPUT = 1, FOR DK POINT
* USE REST OF CRL ALGORITHMS (INTERCHANGING
* 'LT' AND 'DK' IN CRL AND CRG COMMENTSI.
    JMP CRPR
*
        FIN
*
* GET VALUE OF (CRXT,CRYT)
*-------------------------------------------------------------
    ORG •6000
*
CRVL DAC **
    LDA CRXT TEST X BOUNDS
    CAS CRCL
    NOP
    JMP CRRO
    SMI
    SPL
    JMP CRRO
    LDA CRYT TEST Y BOUNDS
    CAS CRRW
        NOP
```

	LDX	$=7$	LT:		
	LDA	CRXT			
	SUB	$=1$			
	STA	CRXT	DK:	LEFT, AGAIN	
	JMP	CRAG			
CR1J	LDX	$=12$		S12,	
	LDA	CRXT			
	AOA				
	STA	CRXT		RIGHT,	
	JMP	CRAG		AGAIN.	
* state 2:		HIT	LT-WENT	DOWN	
CR2	JST	CRVL			
	SNZ				
	JMP	CR2J			
	LDX	=8	LT:	S8,	
	LDA	CRXT			
	AOA				
	STA	CRXT		RIGHT,	
	JMP	CRAG		AGAIN.	
CR2J	LDX	$=11$	DK: S	Sll,	
	LDA	CRXT			
	SUB	$=1$			
	STA	CRXT		LEFT,	
	JMP	CRAG		AGAIN.	
* STATE 3:		HIT	LT-WENT LEFT		
CR3	JST	CRVL			
	SNZ				
	JMP	CR3J			
	LDX	=6	LT: S	S6.	
	LDA	CRYT			
	SUB	= 1			
	STA	CRYT		DOWN,	
	JMP	CRAG		AGAIN.	
CR3J	LDX	= 9	DK: S	S9,	
	LDA	CRYT			
	AOA				
	STA	CRYT		UP,	
	JMP	CRAG		AGAIN.	
* STATE 4:		HIT	LT-WENT	R IGHT	
CR4	JST	CRVL			
	SNZ				
	JMP	CR4J			
	LDX	$=5$	LT: S	S5,	
	LDA	CRYT			
	AOA				
	STA	CRYT		UP,	
	JMP	CRAG		AGAIN.	
CR4J	LDX	$=10$	DK: S	S10,	
	LDA	CRYT			
	SUB	$=1$			
	STA	CRYT		DOWN,	
	JMP	CRAG		AGAIN.	
$\begin{aligned} & \text { * STA } \\ & \text { CR5 } \end{aligned}$	TE 5:	HIT	LT,LT-WENT UP		
	JST	CRVL			
	SNZ				
	JMP	CR5J			
	LDX	$=9$	LT: S	59,	

```
    LDA CRXT
    STA CRXX
    SUB =1
    STA CRXT LEFT,
    LDA CRYT
    STA CRYY
    AOA
    STA CRYT UP,
    LDA CRXX
    I AB
    LDA CRYY
    JMP CROT OUTPUT.
    CR5J LDX = 12
                                DK: S12,
    LDA CRXT
    STA CRXX
    AOA
    STA CRXT RIGHT,
    LDA CRXX
    IAB
    LDA CRYT
    SUB =1
    JMP CROT OUTPUT ADJACENT POINT.
* STATE 6: HIT LT,LT-WENT DOWN
CR6 JST CRVL
    SNZ
    JMP CR6J
    LDX =10 LT: S10,
    LDA CRXT
    STA CRXX
    AOA
    STA CRXT RIGHT,
    LDA CRYT
    STA CRYY
    SUB =l
    STA CRYT
                                    DOWN,
    LDA CRXX
    I AB
    LDA CRYY
    JMP CROT OUTPUT.
CR6J LDX =11 DK: SIl,
    LDA CRXT
    STA CRXX
    SUB =1
    STA CRXT LEFT,
    LDA CRXX
    IAB
    LDA CRYT
    AOA
    JMP CROT OUTPUT ADJACENT POINT.
    * STATE 7: HIT LT,LT-WENT LEFT
CR7 JST CRVL
    SNZ
    JMP CR7J
    LDX =11 LT: Sll,
    LDA CRYT
    STA CRYY
    SUB =1
```



```
CRRW BSS 1
CRRI BSS l
CRCL BSS 1
CROX BSS 1
CROY BSS 1
*
    FIN
```

```
*
```

*
*
*
*
*

***AVG
***AVG
*
*
*
*
*
*
*
*

* ROUTINE TO RASTER SCAN AREA
* ROUTINE TO RASTER SCAN AREA
* BRTWEEN YTOP,YBOT,XL, AND XR
* BRTWEEN YTOP,YBOT,XL, AND XR
* AT SPACING DELT AND ADD RESULT
* AT SPACING DELT AND ADD RESULT
* RIGHT SHIFTED BY 5 TO CONTENTS
* RIGHT SHIFTED BY 5 TO CONTENTS
* OF LOC IN STD FORM. CALLING
* OF LOC IN STD FORM. CALLING
* SEQUENCE AS FOR STO
* SEQUENCE AS FOR STO
* JST AVG
* JST AVG
* DAC YTOP
* DAC YTOP
* DAC YBOT
* DAC YBOT
* DAC XL
* DAC XL
* DAC XR
* DAC XR
* DAC DELT
* DAC DELT
* DAC LOC
* DAC LOC
*
*

AVEX BSS 1
AVEX BSS 1
AVL BSS 1
AVL BSS 1
AVCC BSS 1
AVCC BSS 1
AVOT BSS l
AVOT BSS l
AVOB BSS 1
AVOB BSS 1
AVOL BSS 1
AVOL BSS 1
AVOR BSS 1
AVOR BSS 1
AVOD BSS l
AVOD BSS l
AVO DAC* **
AVO DAC* **
LDA* AVO
LDA* AVO
STA AVOT
STA AVOT
IRS AVo
IRS AVo
LDA* AVO
LDA* AVO
STA AVOB
STA AVOB
IRS AVO
IRS AVO
LDA* AVO
LDA* AVO
STA AVOL
STA AVOL
IRS AVO
IRS AVO
LDA* AVO
LDA* AVO
STA AVOR
STA AVOR
IRS AVO
IRS AVO
LDA* AVO
LDA* AVO
STA AVOD
STA AVOD
IRS AVO
IRS AVO
LDA AVOT
LDA AVOT
OTA •1052 Y, LONG

```
OTA •1052 Y, LONG
```

```
    JMP *-1
    LDA AVO
    SSP
    STA AVEX
    LDA* AVEX
    STA AVL
    IRS AVEX
    AOA AVCC
    AOA
    STA O
    SKP
    IRS* AVCC
    LDA *-1
    STA AVO2
    CRA
    STA* AVL
    STA* AVCC
    LDA AVOL
AVO3 OTA ! 352 X, SHORT, GO
    JMP *-1
    CAS AVOR
    JMP AVO4
AVO5 NOP
    ADD AVOD
    I AB
    INA !1070
    JMP *-1
    ARS 7
    ADD 0.1
    STA 0.1
    IRS 0
AVO2 IRS* AVCC COLUMN COUNT
    IAB
    JMP AVO3
* END OF LINE
AVO4 LDA AVO5 (NOP)
    STA AVO2 NOP FOR IRS* STCC
    IRS* AVL ROW COUNT
    LDA AVOT
    SUB AVOD
    CAS AVOB
    NOP
    JMP AVO6
    JMP* AVEX
AVO6 OTA '1052 Y, LONG
    JMP *-1
    STA AVOT
    JMP AVO3-1
*
    FIN
```

```
*
*
RECT EQU •7000
LOC EQU !20000
*
END
```


***LAP

*
* Subroutine to compute laplacian
* OF PICTURE STORED IN STD FORM
* AND STORE LAPLACIAN IN STD FORM
* CALLING SEQUENCE:
* JST LAP
* DAC LOCP $15 T$ STORAGE LOCATION OF PICTURE
* DAC LOCL $15 T$ STORAGE LOCATION OF LAPLACIAN
* locl may be the same as locp
*

LAP DAC **
LDX* LAP
IRS LAP
LDA* LAP
STA LAPS
IRS LAP
LDA 0,1 NUMBER OF ROWS
SUB $=2$
STA* LAPS
IRS LAPS
TCA
STA LAPO OUTER LOOP COUNT
LDA l.l NUMBER OF POINTS IN ROW
STA LAPC
SUB $=2$
STA* LAPS
IRS LAPS
TCA
STA LAPI INNER LOOP COUNT

* SET UP INDIRECT ADDRESSES

LDA LAPC
ERA $=140000$
STA LAPR
AOA
STA LAPM
AOA
STA LAPL
ADD LAPC
SUB $=1$
STA LAPB

* OUTER LOOP - BY ROWS

LAPW LDA LAPI
STA LAPN
IRS 0
IRS 0

* INNER LOOP - BY POINTS

LAPX LDA* LAPM
ALS 2
SUB* LAPT
SUB* LAPL
SUB* LAPR
SUB* LAPB
IRS 0
STA* LAPS
IRS LAPS

	IRS	LAPN
	JMP	LAPX
\#END	OF ROW	
	IRS	LAPO
	JMP	LAPW
	JMP*	LAP
LAPO	BSS	1
LAPC	BSS	1
LAPI	BSS	1
LAPS	BSS	1
LAPM	BSS	1
LAPR	BSS	1
LAPL	BSS	1
LAPB	BSS	1
LAPN	BSS	1
LAPT	OCT	140001
	FIN	

```
***CDC
*
* ROUTINE TO SUM PICTURES ON DISK AND IN CORE
*
* ROUTINE PRODUCES NX*NY PICTURE I3 IN
* CORE LOCATIONS AT LOC FF. IF II IS ON DISK
* IN FILE ASSOCIATED WITH UNIT U AND I2 IS
* IN CORE AT LOC, THEN IT WILL PRODUCE
* I 3 (X,Y) = (CI*I I (X+DX!,Y+DY!)
* +C2*I2(X+DX2,Y+DY2))/C3
* calling sequence
* CALL CDC,U(LITERAL),Cl,DY1,DX1,LOC,C2,DY2,DX2
* MDAC C3,NY,NX
* ROUTINE ASSUMES THAT A BUFFER BUFA OF
* SUFFICIENT LENGTH TO CONTAIN A FULL LINE
* OF THE PICTURE ON DISK HAS BEEN DEFINED.
* INCOMPATIBLE PICTURE DIMENSIONS WILL
* CAUSE ERROR EXIT TO TOP W/ ERROR }70
*
CDC DAC **
    LDA* CDC
    STA CDRA+1
    STA CDRB+1
    STA CDRC+1
    STA CDRD+1
    IRS CDC
    LDX* CDC
    LDA 0.1
    STA CDCA =Cl
    IRS CDC
    LDX* CDC
    LDA 0.1
    STA CDTA =DYI
    IRS CDC
    LDX* CDC
    LDA 0.1
    STA CDTB =DX1
    IRS CDC
    LDA* CDC
    STA CDBA STORED PICTURE LOC
    IRS CDC
    LDX* CDC
    LDA 0.1
    STA CDCB =C2
    IRS CDC
    LDX* CDC
    LDA 0,1
    STA CDTC =DY2
    IRS CDC
    LDX* CDC
    LDA 0,1
    STA CDTD =DX2
    IRS CDC
    LDX* CDC
    LDA 0.1
    STA CDCC =C3
```

```
    IRS CDC
    LDX* CDC
    LDA 0,1
    STA CDNY =NY
    SNZ
    JMP CDER
    SPL
    JMP CDER
    IRS CDC
    LDX* CDC
    LDA 0,1
    STA CDNX =NX
    SNZ
    JMP CDER
    SPL
    JMP CDER
    IRS CDC
* READ DIMENSIONS OF PICTURE ON DISK
* READ FROM DISK
CDRA JST* 1160
    DEC * UNIT
    DAC CDDO CORE LOC
    DEC 2 NR OF WORDS
    * CHECK IF DIMENSIONS ARE COMPATIBLE
        LDA CDDD
    SUB CDTA
    SUB CDNY
    SPL
    JMP CDER
    AOA
    TCA
    STA CDWU
    LDA CDDD+1
    SUB CDTB
    SUB CDNX
    SPL
    JMP CDER
    LDA* CDBA
    SUB CDTC
    SUB CDNY
    SPL
    JMP CDER
    LDX CDBA
    LDA 1.1
    STA CDAD LINE LENGTH OF PIC IN CORE
    SUB CDTD
    SUB CDNX
    SPL
    JMP CDER
    * SKIP OVER UNUSED TOP OF PICTURE ON DISK
    LDA CDDD+1
    STA CDRB+3
    STA CDRC+3
    STA CDRD+3
    LDA CDTA
    AOA
```

tca
STA TEMP
CDPB IRS TEMP
SKP
JMP CDPA

* READ FROM DISK

CDRB JST* '160
DEC * UNIT
DAC BUFA CORE LOC
DEC * NR OF WORDS
JMP CDPB

* SET UP INDIRECT ADDRESSING
* For picture in core

CDPA LDA CDAD
MPY CDTC
IAB PRODUCT TO A
ADD $=2$
ADD CDTD
ADD CDNX
ADD CDBA
ERA $=140000$
STA CDSP IND ADDR TO ORIG PIC IN CORE

* FOR PICTURE TO BE CREATED

LDA CDBA
ADD $=2$
ERA $=\mathbf{=} 40000$ FOR POST-INDEXING
ADD CDNX
STA CDCP IND ADDR OF NEW PIC

* FOR PICTURE READ OFF DISK

LDA CDBF
ADD CDTB
ADD CDNX
ERA $=140000$
STA CDSF IND ADDR TO FILE PIC BUFFER

* DIMENSION NEW PICTURE

LDA CDNY
STA* CDBA
LDA CDNX
LDX CDBA
STA 1,1

* LOOP ROW BY ROW

LDA CDNY
TCA
STA TEMP
LDA CDNX
TCA
STA TEMP+1

* READ FROM DISK CDRC JST* •160

DEC * UNIT
DAC BUFA CORE LOC
DEC * NR OF WORDS

* LOOP WITHIN ROW

LDX TEMP+1
CDPC LDA* CDSF
MPY CDCA

```
    STA 1500
    IAB
    STA •501
    LDA* CDSP
    MPY CDCB
    DBL
    DAD •500
    SGL
    DIV CDCC
    STA* CDCP
    IRS 0
    JMP CDPC
* END OF ROW REACHED
    LDA CDSP
    ADD CDAD
    STA CDSP
    LDA CDCP
    ADD CDNX
    STA CDCP
    IRS TEMP
    JMP CDRC
    * SKIP UNUSED ROWS OF PICTURES ON DISK
CDPD IRS CDWU
    SKP
    JMP* CDC
    * READ FROM DISK
CDRD JST* '160
    DEC * UNIT
    DAC BUFA CORE LOC
    DEC * NR OF WORDS
    JMP CDPD
*
* ERROR EXIT
CDER LDA =700
    JMP* 'l66 TYPE ERROR NR, GO TO TOP
CDCA BSS 1
CDTA BSS 1
CDTB BSS 1
CDBA BSS 1
CDCB BSS l
CDTC BSS 1
CDTD BSS l
CDCC BSS l
CDNY BSS 1
CDNX BSS 1
CDDD BSS 2
CDAD BSS 1
CDCP BSS l
CDSF BSS 1
CDWU BSS l
CDSP BSS l
CDBF DAC BUFA
    FIN
    END
```



```
    BCI 2,ALL
    JMP PRPC
    JST* MCH= TEXT COMP. - SKP IF N.E.
    DEC -2
    DAC PRMC
    BCI 2,NOW
    JMP PRPH
    JST* MCH= TEXT COMP. - SKP IF N.E.
    DEC -2
    DAC PRMC
    RCI 2,COPY
    JMP PRPE
    JST* MCH=
    DEC -2
    DAC PRMC
    BCI 2,NEXT
    JMP PRPK
    JST* MCH= TEXT COMP. - SKP IF N.E.
    DEC -2
    DAC PRMC
    BCI 2,NONE
    JMP* PRR
    JST* MCH= TEXT COMP. - SKP IF N.E.
    DEC -2
    DAC PRMC
    BCI 2,
    JMP* PRR
* COMPARE AGAINST NAMES IN BLOCK
    LDX PRPN
    LDA PRBL
PRPI STA PRBA
    JST* MCH=
    DEC -2
PRBA BSS 1
PRMC BSS 2
    JMP PRFD FOUND NAME
    LDA PRBA
    ADD =2
    ADD PRNS
    IRS O
    JMP PRPI
    LDA ='277
    JST* '145 TYPE QUESTION MARK
    JMP PRPA
* ACCEPT VALUE IF NAME FOUND
PRFD LDA ='275
    JST* '145
    LDA = '240
    JST* '145
    LDA PRBA
    ADD =2
    ADD PRSN
    STA PRSI
    JST RNR
    STA* PRSI
    LDA =1212
```

```
    JST* •145
    JMP PRPD FOR NEXT INPUT
    * IF ALL TYPED, TYPE NAMES AND ACCEPT VALUES
PRPC LDA =.212
    JST* 1145
    LDA PRPN
    STA PRPU
    LDA PRBL
    STA PRBB
PRPF JST* '152
    DEC -2
PRBB DAC **
    JST* 1152
    DEC -1
    DAC PRMD
    LDA =.240
    JST* 1145
    LDA PRBB
    ADD =2
    ADD PRSN
    STA PRBN
    JST RNR
    STA* PRBN
    LDA PRBB
    ADD =2
    ADD PRNS
    STA PRBB
    IRS PRPU
    JMP PRPF
    JMP* PRR
* IF NOW TYPED, TYPE NAMES AND VALUES
PRPH LDA ='212
    JST* •145
    LDA PRPN
    STA PRPU
    LDA PRBL
PRPG STA PRBC
    JST* •152
    DEC -2
PRBC DAC **
    JST* •152
    DEC -1
    DAC PRMD
    LDA = '240
    JST* •145
    LDA PRBC
    ADD =2
    ADD PRSN
    STA PRBN
    LDA* PRBN
    JST* '154
    LDA =.212
    JST* •145
    LDA PRBC
    ADD =2
    ADD PRNS
```

```
    IRS PRPU
    JMP PRPG
    JMP PRPA
* IF COPY TYPED
* GET NUMBER OF SET TO COPY, COPY IT
PRPE LDA = 240
            JST# 1145
            JST* '152
            DEC -4
            DAC PRMA
            JST RNR
            ADD PRBL
            ADD =2
            STA PRCF
            LDA PRPN
            STA PRPU
            LDA PRBL
            ADD PRSN
PRPJ ADD =2
                            STA PRBN
                            LDA* PRCF
                            STA* PRBN
                            LDA PRCF
                            ADD =2
                            ADD PRNS
                            STA PRCF
                            LDA PRBN
                            ADD PRNS
                            IRS PRPU
                            JMP PRPJ
                            JMP PRPH
PRBL BSS l
PRPN BSS 1
PRSN BSS l
PRNS BSS 1
PRSI BSS 1
PRBN BSS l
PRPU BSS 1
PRCF BSS 1
    FIN
PRMA BCI 4.SET NR.
PRMB BCI 3,WHICH
PRMD BCI 1, =
*
*
*
***RNR
*
* routine to read and leave in a
* EITHER DECIMAL NUMBER OR OCTAL
* NUMBER MARKED bY PRECEDING '.
*
RNR DAC **
    JST*
        '147
    SZE
    JMP* RNR
```

```
    I AB
    CAS = 1777531
    JMP RNP
    SKP
    JMP RNP
    JST**146
    JMP* RNR
RNP CRA
    JMP* RNR
    FIN
*
*
*
***RMR
*
* READ MESSAGE ROUTINE
* CALLED BY
* JST RMR
* DEC -N
* DAC LOC
* ROIITINE READS UP TO 2N CHARACTERS
* INTO LOCATIONS BEGINNING AT LOC,
* 2 CHARS/WORD. RETURNS AFTER 2N CHARS
* OR IF CAR.RET. TYPED. IF CAR.RET.
* BEFORE 2N-TH CHARACTER, LOCATIONS
* FIlLED OUT WITH BLANKS.
*
RMR DAC **
    LDA* RMR
    STA O
    STA RMN
    IRS RMR
    LDA* RMR
    SUB RMN
    ERA = '40000
    STA RML
    LDA ='120240 BLANKS
    STA* RML
    IRS 0
    JMP *-2
    IRS RMR
    LDX RMN
    * READ ODD CHARACTERS
RMPB JST* !144
    CAS =.212
    SKP
    JMP* RMR
    ICR
    STA RMS
* READ EVEN CHARACTERS
    JST* 1144
    CAS = '212
    SKP
    JMP RMPA
    ERA RMS
    STA* RML
```

```
IRS O
    JMP RMPB
    JMP* RMR
* Fill OUT WORD wITH BlaNk
RMPA LDA ='240
    ERA RMS
    STA* RML
    JMP* RIMR.
R.Miv BSS l
RML SSS 1
RMS RSS 1
    FIN
*
*
*
***iMCH
*
* routine to compare two texts
* CALled By
* Name match n.loc.text
* WHICH EXPANDS TO
* NAMF JST* MCH=
* DEC -N
* DAC LOC [OR DAC* LOC IF LOC* IN MACRO]
* BCI N.TEXT
* mCH WIlL COMPARE N WORDS STORED at loc FF.
* WITH FIRST 2N CHARACTERS OF TEXT, RETURN
* DIRECTLY IF THEY MATCH, WITH SKIP IF NOT.
*
MCH DAC **
    LDA* MCH
    STA MCA
    IRS MCH
    LDA* MCH
    STA MCB
    IRS MCH
MCP LDA* MCH
    CAS* MCB
    SKP
    SKP
    JMP MCR
    IRS MCH
    IRS MCB
    IRS MCA
    JMP MCP
    JMP* MCH
MCR IRS MCH
        IRS MCA
        JMP MCR
        IRS MCH
        JMP* MCH
MCA BSS I
MCB BSS 1
    END
```

*
* ROUTINE TO TEST LANDMARK INSERTION PROGRAM
* CALLS AND USES LMI

ORG •1000
STRT
BEG LDA $=-1$
LDX $=-21$
PTA STA LMIX+21.1
IRS 0
JMP PTA
JST LMI
SS2
JMP BEG

* REQUEST and read lmta

JST* *+4
BCI 3,LMTA
DAC $\quad>R R<$
STA LMTA

* REQUEST AND READ LMBA

JST* *+4
BCI 3.LMBA
$D A C \quad>R R<$
STA LMBA

* REQUEST AND READ LMLA

JST* * +4
BCI $3 \cdot L M L A$
DAC $>R R<$
STA LMLA

* REQUEST AND READ LMRA

JST* *+4
BCI $3 . L M R A$
DAC $\quad>R R<$
STA LMRA

* REQUEST AND READ LMDA

JST* * + 4
BCI 3.LMDA
DAC $>R R<$
STA LMDA

* REQUEST AND READ LMDX

JST* *+4
BCI 3.LMDX
DAC $>$ RR<
STA LMDX

* REQUEST AND READ LMDY

JST* * +4
BCI 3.LMDY
DAC $>R R<$
STA LMDY

* REQUEST AND READ LMTC

JST* * +4
BCI 3.LMTC
$D A C \quad>R R<$
STA LMTC

* REQUEST AND READ LMLC

JST* * +4
BCI 3,LMLC
DAC $\quad>R \mathrm{R}<$

STA LMLC

* REQUEST and READ lmdC

JST* *+4
BCI $3, L M D C$
DAC >RR<
STA LMDC
JMP BEG
RNR = DAC RNR
CSS = DAC CSS
$C S D=D A C \quad C S D$
ILC= DAC ILC
DIS = DAC DIS
STO = DAC STO
$A V G=D A C \quad A V O$
*
*

* parameter request aind read routine

BCI 1,=
OCT $1177531=1$
>RR< DAC **
LDA $=1212$
JST* 1145
LDA $>R R<$
STA *+5
ADD $=4$
STA >RR<
JST* 1152
DEC -3
DAC **
JST* 1152
DEC -1
DAC $\quad>R R<-2$
JST* 1147
SNZ
SKP
JMP* >RR<
IAB
CAS $\quad>R R<-1$
SKP
JMP *+3
CRA
SKP
JST* '146
JMP* >RR< FIN
***LMI
*

* ROUTINE TO LET OPERATOR ENTER LANDMARKS
*
* OPERATION
* l) FULL FRAME IS DISPLAYED WITH TRIM IN
* READ. LANDMARKS ENTERED SO FAR SHOW
* AS CROSSES. FINE RESOLUTION SCAN MARKS
* POSITION OF STYLUS.

2) WHEN STYLUS IS DEPRESSED, SURROUNDING

* AREA IS DIGITIZED, DISPLAYED ENLARGED
* WITH TRIM IN DISPLAY MODE. CROSS MARKS

```
* LOCATION OF STYLUS.
* 3) WHEN STYLUS IS DEPRESSED, ITS LOCATION
    IN TERMS OF THE FRAME COORDINATES IS
    COMPUTED AND ASSUMED TO BE THE LOCATION
    OF A LANDMARK. TELETYPE REQUESTS 'NR'.
    IF O TYPED, LANDMARK LOCATION IS ASSUMED
    INVALID, OTHERWISE COORDINATES ARE STORED
    IN ARRAYS LMIX AND LMIY, STEP I IS REPEATED.
    NO MORE THAN }20\mathrm{ LANDMARKS MAY BE ENTERED.
    RAISING SSI DURING DISPLAY OF FULL FRAME
    (STEP l) CAUSES EXIT FROM ROUTINE.
    ROUTINE IS CALLED BY
        JST LMI
*
LMI DAC **
* DISPLAY full frame
* call subroutine css
    JST* CSS=
    DAC = '67
    DAC =1
    DAC =.3777
* CALL SUBROUTiNE ILC
LMPA JST* ILC=
    DAC LMTA
    DAC LMBA
    DAC LMLA
    DAC LMRA
    DAC LMDA
* LEAVE LMI IF SSI IS UP
    SR1
    JMP* LMI
* DISPLAY LANDMARKS IN NOW
    LDA =-20
    LDX =1
    STA LMTM
LMPB LDA LMIX,I
    SPL
    JMP LMPH
    STX LMTX
    JST* CSD=
    DAC LMIX,I
    DAC LMIY,I
    LDX LMTX
LMPH IRS O
    IRS LMTM
    JMP LMPB
* CHECK TABLET
LMPC LDX =0 'STYLUS DOWN' MARKER
    INA 'l151 READ TABLET X
    JMP *-1
    LLR 3
    ARS 2
    STA LMTX TABLET X
    INA '1251 READ TABLET Y
    JMP *-1
    LLR 3
    ARS 2
```

```
    STA LMTY TAOLET Y
    IAE
    STA *+2
    SKP
    BSS 1
    ANA = 33
    SZE
    JMP *-16 TABLET ERROR
    LDA *-4
    ANA = 144
    SZE SKIP ON STYLUS DOWN
    LDX =-1 'STYLUS UP: MARKER
* GET LIMITS FOR SMALL AREA
            LDA LMDX
            ARS 1
            ADD LMTX
            STA LMRB
            SUB LMDX
            STA LMLB
            LDA LMDY
            ARS l
            ADD LMTY
            STA LMTB
            SUB LMDY
            STA LMEB
            IRS O GENERATE SKIP IF STYLUS IS UP
            JMP LMPD
* INTENSIFY AREA NEAR STYLUS (IF UP)
* CALL SUBROUTINE ILC
            JST* ILC=
            DAC LMTB
            DAC LMEB
            DAC LMLB
            DAC LMRB
            DAC =6
                            JMP LMPA
* DIGITIZE SMALL AREA (IF STYLUS DOWN)
* call subroutine sto
LMPD JST* STO=
                            DAC LMTB
                            DAC LMBB
                            DAC LMLB
                            DAC LMRB
                            DAC =1
                            DAC PICT
                            LDA =-7
                            STA LMTM
* CALL SUBROUTINE AVG
LMPE JST* AVG=
            DAC LMTB
            DAC LMBB
            DAC LMLB
            DAC LMRB
            DAC =1
            DAC PICT
            IRS LMTM
            JMP LMPE
```

* DISPLAY FROM CORE, TRACK STYLUS
* CALL SUBROUTINE DIS

LMPF JST* DIS=
DAC LMTC
DAC LMLC
DAC LMDC
DAC PICT

* CALL Subroutine csd

JST* CSD =
DAC LMTX
DAC LMTY
INA 1151 READ TABLET X
JMP *-1
LLR 3
ARS 2
Sta lmTX tablet X
INA 1251 READ TABLET Y
JMP *-1
LLR 3
ARS 2
STA LMTY TABLET Y
IAB
STA *+2
SKP
BSS 1
ANA $=133$
SZE
JMP *-16 TABLET ERROR
LDA *-4
ANA $=144$
SZE SKIP ON STYLUS DOWN
JMP LMPF

* COMPUTE AND STORE LOCATION OF
* DEPRESSED STYLUS IN FRAME COORDINATES
* READ COORDINATE Number
* TYPE 'LNDMK NR = '

LMPG JST* •152
DEC -06
DAC *+2
JMP * * $1+06$
BCI 06, LNDMK NR =
JST* RNR=
SNZ
JMP LMPA
SPL
JMP LMER
CAS $=20$
JMP LMER
NOP
STA 0
LDA LMTX
SUB LMLC
IAB
CRA
DIV LMDC
ADD LMLB
STA LMIX,I

```
    LDA LMTC
    SUB LMTY
    IAB
    CRA
    DIV LMDC
    TCA
    ADD LMTB
    STA LMIY,I
    JMP LMPA
    * IF COORDINATE NUMBER <0 OR >20,TRY AGAIN
    LMER LDA ='277 QUEST MK
    JST* '145
    LDA ='212
    JST* '145
    JMP LMPG
    LMIX BSS 2l
    LMIY BSS 21
    LMTX BSS 1
    LMTY BSS l
    LMRB BSS 1
    LMLB BSS l
    LMTB BSS l
    LMBB BSS 1
LMTM BSS 1
LMTA OCT 3200
LMBA OCT 600
LMLA OCT 600
LMRA OCT }320
LMDA OCT 10
LMDX OCT 100
LMDY OCT 100
LMTC OCT }300
LMLC OCT 1000
LMDC OCT }2
PICT EQU •20000
FIN
```

* ROUTINE TO COMPARE PICTURES
* PICTURE 1 ON DISK, PICTURE 2 IN CORE
* NX*NY SECTIONS ARE COMPARED BY PRODUCT RULE
* DOUBLE PRECISION RESULT LEFT IN REGISTERS A•B
* IS SUM OVER X AND Y OF
* $11(X+D X:, Y+D Y 1) * I 2(X+D X 2, Y+D Y 2)$
* INCOMPATIBLE SIZE SPECIFICATION RESULTS
* IN MESSAGE 'ERROR 701. AND RETURN TO TOP.
* OVERFLOW DURING SUMMING RESULTS IN C BIT
* BEING SET WHEN ROUTINE RETURNS.
* CALLING SEQUENCE:
* CALL PDC,U,DY1,DX1,LOC,DY2,DX2,NY,NX
* U IS LITERAL UNIT NUMBER FOR DISK FILE.
* FILE MUST BE OPEN. LOC IS LOCATION OF
* PICTURE IN CORE IN STD FORM. ROUTINE
* ASSUMES A BUFFER CALLED BUFA OF SUFFICIENT
* LENGTH TO HOLD ONE FULL LINE OF PICTURE
* ON DISK HAS BEEN DEFINED FOR ITS USE.

PDC DAC **
LDA* PDC
STA PDRA+1
STA PDRB+1
STA PDRC+1
STA PDRD+1
IRS PDC
LDX* PDC
LDA 0.1
STA PDTA =DYI
IRS PDC
LDX* PDC
LDA O.I
STA PDTB =DXI
IRS PDC
LDA* PDC
STA PDBA STORED PICTURE LOC
IRS PDC
LDX* PDC
LDA 0,1
STA PDTC =DY2
IRS PDC
LDX* PDC
LDA 0.1
STA PDTD = DX2
IRS PDC
LDX* PDC
LDA 0.1
STA PDNY =NY
SNZ
JMP PDER
SPL
JMP PDER
IRS PDC
LDX* PDC
LDA 0,1

```
    STA PDNX =NX
    SNZ
    JMP PDER
    SPL
    JMP PDER
    IRS PDC
    * READ DIMENSIONS OF PICTURE ON DISK
    * READ FROM DISK
    PDRA JST* '160
    DEC * UNIT
    DAC PDDD CORE LOC
    DEC 2 NR OF WORDS
* CHECK IF DIMENSIONS ARE COMPATIBLE
    LDA PDDD
    SUB PDTA
    SUB PDNY
    SPL
    JMP PDER
    AOA
    TCA
    STA PDWU
    LDA PDDD+1
    SUB PDTB
    SUE PDNX
    SPL
    JMP PDER
    LDA* PDBA
    SUB PDTC
    SUB PDNY
    SPL
    JMP PDER
    LDX PDBA
    LDA 1.1
    STA PDAD LINE LENGTH OF PIC IN CORE
    SUB PDTD
    SUB PDNX
    SPL
    JMP PDER
* SKIP OVER UNUSED TOP OF PICTURE ON DISK
    LDA PDDD+1
    STA PDRB+3
    STA PDRC+3
    STA PDRD+3
    LDA PDTA
    AOA
    TCA
    STA TEMP
PDPB IRS TEMP
    SKP
    JMP PDPA
* READ FROM DISK
PDRB JST* '160
    DEC * UNIT
    DAC BUFA CORE LOC
    DEC * NR OF WORDS
    JMP PDPB
```

 STA PDEX OVERFLOW MARKER
 * SET UP INDIRECT ADDRESSING
* for picture in core
LDA PDAD
MPY PDTC
IAB
$A D D=2$
ADD PDTD
ADD PDNX
ADD PDBA
ERA $=140000$
STA PDSP IND ADDR TO ORIG PIC IN CORE
* FOR PICTURE READ OFF DISK
LDA PDBF
ADD PDTB
ADD PDNX
ERA $=140000$
STA PDSF IND ADDR TO FILE PIC BUFFER
 * LOOP RON BY ROW
LDA PDNY
TCA
STA TEMP
LDA PDNX
TCA
STA TEMP+1
 * READ FROM DISK
PDRC JST* '160
DEC * UNIT
DAC BUFA CORE LOC
DEC * NR OF WORDS
* LOOP WITHIN ROW
LDX TEMP + 1
PDPC DBL
IMA* PDSF
MPY* PDSP
DAD •500
SRC
IRS PDEX OVERFLOW
DST •500
IRS 0
JMP PDPC
SGL
 * END OF ROW REACHED
LDA PDSP
ADD PDAD
STA PDSP
IRS TEMP
JMP PDRC
 * SKIP UNUSED ROWS OF PICTURES ON DISK
PDPD IRS PDWU
SKP
JMP PDPE

```
* READ FROM DISK
PDRD JST* !160
    DEC * UNIT
    DAC BUFA CORE LOC
    DEC * NR OF WORDS
    JMP PDPD
* EXIT
PDPE SCB
        LDA PDEX
        SNZ
        RCB
        LDA 1501
        IAB
        LDA 1500
        JMP* PDC
*
* ERROR EXIT
PDER LDA =700
        JMP* '166 TYPE ERROR NR, GO TO TOP
PDTA BSS 1
PDTB BSS 1
PDBA BSS 1
PDTC BSS 1
PDTD BSS 1
PDNY BSS 1
PDNX BSS 1
PDDD BSS 2
PDAD SSS 1
PDSF BSS 1
PDWU BSS 1
PDSP BSS 1
PDEX BSS l
PDBF DAC BUFA
```

```
***PAR
*
* ROUTINE TO COMPUTE SUM OF SOUARES OF
* INTENSITIES OF NY*NX SECTION OF A PICTURE
* AT PIC, DY AND DX FROM UPPER LEFT CORNER,
* L.EAVE ANSWER AS DOUBLE PRECISION NUMBER IN
* ANS AND ANS+1.
* CALLING SEQUENCE:
* CALL SSP,PIC,NY,NX,DY,DX,ANS
*
PAR DAC **
    LDX* PAR
    LDA 0.l
    STA PATY NR OF ROWS IN PICTURE
    LDA l,l
    STA PATX NR OF COLUMNS IN PICTURE
    STX TEMP
    IRS PAR
    LDX* PAR
    LDA 0,1
    TCA
    STA PANY
    IRS PAR
    LDX* PAR
    LDA 0,1
    TCA
    STA PANX
    IRS PAR
    LDX* PAR
        LDA 0,1
        MPY PATX
        IAB
        ADD TEMP
        ADD = =40002
        IRS PAR
        LDX* PAR
        ADD 0.1
        SUB PANX
        STA PAAD IND ADDR OF PICTURE, POST INDEXED
        IRS PAR
        LDA* PAR
        STA PATO
        IRS PAR
* COMPUTE SUM OF SQUARES
        CRA
        STA •500
        STA S01
PAPF LDX PANX
PAPC LDA* PAAD
        MPY* PAAD
        DBL
        ADD .500
        STA .500
        SGL
        IRS 0
        JMP PAPC
* END OF ROW
```

```
    IRS PANY
    JMP PAPD
* STORE RESULTS AND EXIT
    LDX PATO
    LDA 1500
    STA 0,1
    LDA 1501
    STA 1,1
    JMP* PAR
* GO TO NEXT ROW
PAPD LDA PAAD
ADD PATX
STA PAAD
JMP PAPF
PATY BSS l
PATX BSS 1
PANY BSS 1
PANX BSS 1
PAAD BSS 1
PATO BSS 1
FIN
```


APPENDIX B

TRIM OPERATING PROGRAM

$$
B-0
$$

APPENDIX B
 TRIM OPERATING PROGRAM

The TRIM Operating Program (TOP) is the operating system that is being used on our Honeywell DDP-516. The following routines are provided:

TELETYPE UTILITY ROUTINES
The following teletype routines are provided by TOP.

1. LTll Accept one character
call by: JST* '144
operation:
Character is typed in through keyboard into right half of A. Nulls are ignored. Carriage return ('215) is converted into line feed ('212) and line feed is typed out as well.

A question mark typed in will not return in A, but will cause an immediate transfer to the TOP executive.
2. LTO1 Type out a character
call by:
operation:
JST* '145
Character in right half of A is typed out. Nulls are ignored; line feed types carriage return as well.
3. IOCT Accept octal number
call by:
operation:
JST* '146
A signed 16 bit octal integer terminated by any character not 0-7 is accepted into A; the terminating character returns in B. If the first character typed in is nonnumeric (terminating), zero returns in A, - that character in B.
4. IDEC Accept decimal number
call by: JST* '147
operation: Same as IOCT, except to radix ten.
5. IRAD
call by
Accept arbitrary radix number.
LDA RADX
JST* '150
operation: Radix in A entering, otherwise similar to IOCT.
6. OOCT Type out octal number.
call by: JST* '153
operation: Contents of A are typed out as a (16 bit) octal integer.
7. ODEC Type out decimal number
call by: JST* 'l54
operation: Contents of A are typed out as (15 bit + sign, two's complement) decimal number.
8. ORAD Type out arbitrary radix number
call by:
JST* 'l55
operation: Type out contents of A to radix in B. if B is positive, the output amounts to 15 bits plus sign, if B negative, the output amounts to 16 bits positive.
9. TONA Type out character string
call by:
JST* 'l52
DEC -N
DAC ARRY
operation: Characters are typed out starting from location ARRT; $-N$ is the two's complement of the number of words whose contents will be typed.
10. TON Type out character string and carriage return.
call by:
JST* '151
DEC -N
DAC ARRY
operation: Same as TONA, with a carriage return ('212) typed at the end.
11. GETN Accept file name from teletype
call by: JST* '167 DAC NAM
operation: Up to six characters will be accepted, terminated by a carriage return. The name will be left justified in the three word buffer NAM with spaces ('240) added to make it six characters long. The carriage return will not be part of the name.

DISK INPUT-OUTPUT ROUTINES

There are three subroutines which provide an interface between user programs and the disk: Search, Read, and Write.

Search

call by:	SST*	'162
	DEC	KEY
	DAC	NAM
	DEC	UNIT

operation: This routine performs one of five functions depending on KEY.
$K E Y=1 \quad$ Open a file for reading. The directory is searched for a file with name as in NAM. If found, the file will be associated with UNIT (l-4) for reading purposes. If no file is found, an error message (8) will result.
$\mathrm{KEY}=2$

Key $=3$

Key $=4 \quad$ Close a unit. If the unit is open for any

Key $=5$
2. REAX
call by:
operation:
Open a file for writing. The directory is searched for a file with name as in NAM. If no file is found, a new one will be created. Unit UNIT (1-4) will be associated with the file for writing purposes.

Open a file for reading and writing; the same as Key $=2$ except that reading will be allowed as well. purpose, its association with whatever file (i.e. NAME is irrelevant) will be terminated. If the unit is not open, SRCX with KEY $=4$ produces no result.

Delete a file. The directory is searched for a file with name as in NAM; if found it is a checked to be not open. If so, the file entry will be deleted from the directory, and the records forming the file will be released to free storage. The unit number is irrelevant for deletion.

Read from disk
JST* '160
DEC UNIT
DAC ARY
DEC NWDS
REAX reads NWDS words from the file associated with UNIT (must be open for read or read/write) into successive location beginning with ARY. Attempts to read with a unit not open or to read past the end of the file will result in error messages (e or 9).
3. WRIX
call by:
Write on disk
JST* 'l61
DEC UNIT
DAC ARY
DEC NWDS
operation: WRIX writes NWDS words on the file associated with UNIT (must be open for write or read/write) starting at location ARY. Attempts to write with a unit not open will result in error message 3.

RETURNS

1. RETURN
call by
JMP* '156
operation:
Returns to TOP from a user program.
2. ERROR RETURN
call by:
$\mathrm{LDA}=\mathrm{NN}$
JMP 'l66
operation: This will type "ERROR NN" and return to TOP from a user program.

APPENDIX C

THE MACRO PROCESSING PROGRAM

```
*
*
*
* MACRO COMPILER PROGRAM
* TAILORED AFTER ORGASS SIMCMP
*THIS PROGRAM WAS LAST CHANGED ON FEBRUARY 22.1971
* SEE CACM SEPT 69 'MOEILE PROGRAMMING SYSTEM*
*
*
    LOAD
*
* TOP LINKS
*
TTIl EQU 1144 \TYPE IN ONE CHAR
TTO1 EQU 1145 \TYPE OUT ONE CHAR
TONC EQU '151 \TYPE OUT STRING AND CR
TONN EQU '152 \TYPE OUT STRING, NO CR
TOP EQU '156 \RETURN TO SYSTEM
READ EQU '160 \READ FROM DISK
WRIT EQU '161 \WRITE ON DISK
SRCH EQU '162 \SEARCH ON DISK
ERRT EQU '166 \ERROR RETURN
NAMG EQU 1167 \GET FILE NAME
*
*SPECIAL CHARACTERS
* [ BEGINNING OF MACRC DEF
* ] END OF MACRO DEF
* @ PARAMETER FLAG IN MACRO NAME
* % PARAMETER FLAG IN MACRO BODY
* & REST OF LINE PARAMETER FLAG IN NAME
*
*
ORG 1400
* SECTOR ZERO VARIABLES AND LINKS
ANL OCT 212 NEW LINE
ALBR OCT 333 \LEFT BRACKET
ARBR OCT 335 \RIGHT BRACKET
APCT OCT 245 \% SIGN
AETC OCT 246 ETC SIGN
AATS OCT 300
RDL DAC RDX READ A LINE
WTL DAC WTX WRITE A LINE
GETX OCT 0 GET CHAR
PUTX OCT 0 PUT CHAR
NMAC OCT O NO OF MACROS
MMAX OCT 600 mAX NO OF MACROS
CMAX OCT }40000\mathrm{ MAX CHAR LENGTH OF MACRO BUFFER
LLIN OCT 0 LENGTH ILIN
MPTR BSZ 128 MACRU POINTERS
TBUF OCT }1000\mathrm{ CHAR LENTH BUFF LIN
NPAR OCT 0 NO PARAMETERS
PAR BSZ 64 PARAMETER LIST
TSTK OCT -1000 LENTGH OF STAK
MAT3 OCT O CHAR BUFFER
PUTI OCT O
GETI OCT O
ILNN DAC ILIN
```

```
    ORG '1000
*
* INITIALIZE ; OPEN FILES
INIT JST* TONN TYPE MESSAGE
    OCT -7
    DAC MESI
    JST* NAMG GET INPUT FILE NAME
    DAC NAMI
    JST* TONN
    OCT -7
    DAC MES2
    JST* NAMG GET OUTPUT FILE NAME
    DAC NAMO
    JST* SRCH OPEN FILES
    OCT l
    DAC NAMI
    OCT 1
    JST* SRCH
    OCT 2
    DAC NAMO
    OCT 2
    CRA
    STA NMAC NO OF MACROS
    STA MCCT MACRO CHAR COUNT
    STA SCCT STACK CHAR CT
* CONTROL ROUTINE
CTL JST* RDL READ A LINE
    LDA* ILNN
    ICL
    CAS ALBR LEFT BRACKET
    JMP EXPN
    JMP MDEF MACRO DEF
    JMP EXPN EXPAND
* MACRO DEFINITION
MDEF JST MDIN INCREMENT POINTERS
    LDA =1
    STA NUMI
MDLP LDA NUMI GET CHAR
    ARS 1
    SSC
    JMP RITE
    ADD ILNN
    STA GETX
    LDA* GETX
    CAL
    JMP NUM2
NUMI OCT O
RITE ADD ILNN
    STA GETX
    LDA* GETX
    ICL
NUM2 STA MDE1
    JST MAIC ADD CHAR
    LDA MDEI
    CAS ARBR MACRO TERM CHAR
    JMP NO24
```



```
NO22 IRS GTMI
    CAS AATS
    JMP NO2O
    JMP MAT4 PARAMETER DEF.
    CAS AETC & SIGN
    SKP
    JMP MATR
NO2O CAS MAT3
    JMP* MATC
    SKP
    JMP* MATC
    CAS ANL END OF LINE
    JMP MATL LOOP ON DEF LINE
    IRS MATC
MATG JST GTMC
    CAS ARBR TERIM CHAR
    JMP NO23
    JMP PUSH DONE, PUSH RUFF IN STAK
    CAS APCT
    SKP
    JMP MAT8 PARAMMETER USE
NO23 CAS AETC
    SKP
    JMP CONR
MATT STA PUTI
    LDA MATG
    ARS 1
    SRC
    JMP ICH4
    ADD NUY9
    STA PUTX
    LDA* PUTX
    ICR
    ADD PUT1
    ICA
    STA* PUTX
    JMP NUMO
MATG OCT O
NUM9 DAC BUFF
ICH4 ADD NUM9
    STA PUTX
    LDA* PUTX
    CAP
    ADD PUTI
    STA* PUTX
NUMO IRS MATG
    LDA MAT6
    CAS TBUF
    JMP ER6
    NOP
    JMP MAT9
*
* CONVERT Paraineter
MAT8 JST GTMC TWO CHARS INTO NO.
    SUE =.260
    MPY = 10
```

```
    IAB
    STA MAT2
    JST GTMC
    SUB =.260
    ADD MAT2
    SPL
    JMP ER5 BAD NO., NOT O-PAR
    CAS NPAR
    JMP ER5
    NOP
    STA 'O
    LDA PAR,I
    JMP MATT
*
* PARAMETER DEFINITION
MAT4 LDX NPAR
    LDA MAT3
    CAS ANL
    SKP
    JMP* MATC NO MATCH, NO PARAMETER
    STA PAR,I PARAM INTO PAR
    IRS NPAR NO. PARAM
    JMP MATL
*
MAT2 OCT O SAVE MACRO CHARACTER
* E SIGN IN MACRO NAME LINE
MATR CRA
    STA MARI REST BUFFER ZEROED
    JST GTMC MOVE PAST CR IN MACRO
    LDA MATI
    STA MAR2 INPUT LINE CONT
    LDA MAT3 CURRENT INPUT CHAR
MARL CAS ANL
    SKP
    JMP MAT9-1 DONE
    STA PUTI
    LDA MARI
    ARS 1
    SRC
    JMP ICH5
    ADD NOlO
    STA PUTX
    LDA* PUTX
    ICR
    ADD PUTI
    ICA
    STA* PUTX
    JMP NOll
MARI OCT O
NOIO DAC RBUF
ICH5 ADD NOlO
    STA PUTX
    LDA* PUTX
    CAR
    ADO PUTI
    STA* PUTX
NOIl IRS MARI
```

```
    LDA MAR2
    ARS 1
    SSC
    JMP RIT4
    ADD ILNN
    STA GETX
    LDA* GETX
    CAL
    JMPNOL2
MAR2 OCT O
RIT4 ADD ILNN
    STA GETX
    LDA* GETX
    ICL
NO12 IRS MAR2
    JMP MARL
*&- CONVERT REST BUFFER
CONR LDA MATG
    STA CNRI BUFF COUNT
    CRA
    STA CNR2 RBUF COUNT
    LDA MARI
    SNZ
    JMP MAT9 RETURN ON EMPTY RBUF
    TCA
    STA CNR3 INDEX
CNRL LDA CNR2 GET REST OF BUFFER CHAR
    ARS 1
    SSC
    JMP RIT5
    ADD NOlO
    STA GETX
    LDA* GETX
    CAL
    JMP NOl3
CNR2 OCT O
RIT5 ADD NOlO
    STA GETX
    LDA* GETX
    ICL
NO13 STA PUT1 PUT INTO BUFF
    LDA CNRI
    ARS I
    SRC
    JMP ICH6
    ADD NUM9
    STA PUTX
    LDA* PUTX
    ICR
    ADD PUTI
    ICA
    STA* PUTX
    JMP NOl4
CNRI OCT O
ICH6 ADD NUM9
    STA PUTX
    LDA* PUTX
```

```
    CAR
    ADD PUTI
    STA* PUTX
NO14 IRS CNRI
    IRS CNR2
    IRS CNR3
    JMP CNRL LOOP
    LDA CNRI
    STA MAT6
    JMP MAT9
CNR3 OCT O
*
*PUSH BUFFER INTO STAK
PUSH LDA SCCT STACK TOP COUNT
    SUB MAT6 BUFFER COUNT
    STA SCCT NEW STAK TOP
    STA PUSI
    CAS TSTK
    NOP
    SKP
    JMP ER4 STACK TOO BIG
    CRA
    STA PUS2
PUSL LDA PUS2
    ARS 1
    SSC
    JMP RIT6
    ADD NUMG
    STA GETX
    LDA* GETX
    CAL
    JMP NOl5
RIT6 ADD NUM9
    STA GETX
    LDA* GETX
    ICL
NO15 STA PUTI PUT INTO STAK
    LDA PUSI
    ARS 1
    SRC
    JMP ICH7
    ADD NUM5
    STA PUTX
    LDA* PUTX
    ICR
    ADD PUT1
    ICA
    STA* PUTX
    JMP NOl6
PUSI OCT O
PUS2 OCT O
ICH7 ADD NUM5
    STA PUTX
    LDA* PUTX
    CAR
    ADD PUTI
    STA* PUTX
```

```
NO16 IRS PUSI INDEX
    IRS PUS2
    LDA PUS2
    CAS MAT6
    NOP
    JMP* MATC DONEiRETURN
    JMP PUSL LOOP
*
    * GET A CHAR FROM MACRO BUFFER
    GTMC DAC **
        LDA GTM1
        ARS l
        SSC
        JMP RIT7
        ADD NUM3
        STA GETX
        LDA* GETX
        CAL
        JMP NO17
    GTMI OCT O
    RIT7 ADC NUM3
        STA GETX
        LDA* GETX
        ICL
    NOl7 IRS GTMI
        JMP* GTMC
    *
    *
    ER1 LDA =401
        JMP* ERRT
    ER2 LDA =402
        JMP* ERRT
    ER3 LDA =403
        JMP* ERRT
    ER4 LDA =404
        JMP* ERRT
    ER5 LDA =405
        JMP* ERRT
    ER6 LDA =406
        JMP* ERRT
    ER7 LDA =407
        JMP* ERRT
    NAMI BSS 3 INPUT FILE NAME
    NAMO BSS 3 OUTPUT FILE NAME
    MESI BCI 7.SOURCE FILE
    MES2 BCI 7,OUTPUT FILE
    FIN
    * READ AN INPUT LINE
    ORG !2000
RDX DAC **
        CRA
        STA LLIN
RDXI LDA CWRD
    CAS LBWD
    NOP
    JST RBLK
    LDA LLIN
```

```
    ARS I
    STA O
    LDA* CWRD
    STA ILIN,I
    IRS LLIN
    IRS LLIN
    IRS CWRD
    CAS DZO
    SK!
    JMP RUPP
    ICL
    CAS =.212
    SKP
    JMP RDX2
    LDA ILIN,I
    CAL
    CAS =.212
    JMP RDX1
    JMP* RDX
    JMP RDXI
RDX2 LDA LLIN
    SUB =1
    STA LLIN
    JMP* RDX
RBLK DAC O
    LDA BFA
    STA CWRD
    STA LBW'D
    LDA =-512
    STA BCON
RONE JST* READ
    OCT l
LBWD DAC **
    OCT 1
    LDA* LBWD
    IRS LBWD
    CAS DZO
    SKP
    JMP* RBLK
    IRS BCON
    JMP RONE
    JMP* RELK
DZO OCT 122260
BCON OCT O
BFA DAC BADD
CWRD OCT }10
*COME HERE IF DOLLAR SIGN -ZERO
RUPP JST* SRCH
    OCT 4
    OCT 0
    OCT 1
    JST* WRIT
    OCT }
    DAC DZO
    OCT l
    JST* WRIT
    OCT 2
```

```
    DAC ANL
    OCT l
    JST* SRCH
    OCT 4
    OCT O
    OCT 2
    JIMP* TOP
*
* WRITE AN OUTPUT LINE
WTX DAC
    LDA LLIN PUT O IN LAST CHAR
    STA NOI8
    ARS l
    SRC
    JMP ICH8
    ADD ILNN
    STA PUTX
    LDA* PUTX
    CAL
    STA* PUTX
    JMP NOl9
NOl8 OCT O
ICH8 ADD ILNN
    STA PUTX
    LDA* PUTX
    CAR
    STA* PUTX
NO19 LDA NOl8 COMPUTE WORD COUNT
    AOA
    ARS l
    STA WTl
    JST* WRIT WRITE LINE
    OCT 2
    DAC ILIN
WTl OCT O
    JMP* WTX
ILIN BSS 50 INPUT LINE
RBUF BSZ 50 REST BUFFER
    FIN
    ORG •3000
MLST EQU !20000 MACRO BUFFER TAKES ALL OF UPPER CORE-
    BSZ !377
STAK OCT O
    NOP
BUFF BSS 1400
BADD BSS 512
    END
```


[^0]: Prepared for
 DEPARTMENT OF TRANSPORTATION FEDERAL HIGHWAY ADMINISTRATION WASHINGTON, D. C. 20546

[^1]: *Adapted from: Prerau, David S.: Computer Pattern Recognition of Standard Engraved Music Notation, PhD Thesis, M.I.T., September 1970, pp. 77-83

